Search

Displaying 101 - 125 of 2116 items.

Study of Fossilized Massospondylus Dinosaur Embryos from South Africa (1978-2012)

In 1978, James Kitching discovered two dinosaur embryos in a road-cut talus at Roodraai (Red Bend) in Golden Gate Highlands National Park, South Africa. Kitching assigned the fossilized embryos to the species of long necked herbivores Massospondylus carinatus (longer vertebra) from the Early Jurassic period, between 200 and 183 million years ago. The embryos were partially visible but surrounded by eggshell and rock, called matrix. Kitching said that the eggs were too delicate to remove from the matrix without damage.

Format: Articles

Subject: Theories, Organisms

The Hedgehog Signaling Pathway in Vertebrates 

The hedgehog signaling pathway is a mechanism that regulates cell growth and differentiation during embryonic development, called embryogenesis, in animals. The hedgehog signaling pathway works both between cells and within individual cells.

Format: Articles

Subject: Theories

"Gene Regulation for Higher Cells: A Theory" (1969), by Roy J. Britten and Eric H. Davidson

In 1969, Roy J. Britten and Eric H. Davidson published Gene Regulation for Higher Cells: A Theory, in Science. A Theory proposes a minimal model of gene regulation, in which various types of genes interact to control the differentiation of cells through differential gene expression. Britten worked at the Carnegie Institute of Washington in Washington, D.C., while Davidson worked at the California Institute of Technology in Pasadena, California. Their paper was an early theoretical and mechanistic description of gene regulation in higher organisms.

Format: Articles

Subject: Publications

Serial Cultivation of Human Diploid Cells in the Lab (1958–1961) by Leonard Hayflick and Paul S. Moorhead

From 1958 to 1961, Leonard Hayflick and Paul Moorhead in the US developed a way in the laboratory to cultivate strains of human cells with complete sets of chromosomes. Previously, scientists could not sustain cell cultures with cells that had two complete sets of chromosomes like normal human cells (diploid). As a result, scientists struggled to study human cell biology because there was not a reliable source of cells that represented diploid human cells. In their experiments, Hayflick and Moorhead created lasting strains of human cells that retained both complete sets of chromosomes.

Format: Articles

Subject: Experiments

Apoptosis in Embryonic Development

Apoptosis, or programmed cell death, is a mechanism in embryonic development that occurs naturally in organisms. Apoptosis is a different process from cell necrosis, which is uncontrolled cell death usually after infection or specific trauma. As cells rapidly proliferate during development, some of them undergo apoptosis, which is necessary for many stages in development, including neural development, reduction in egg cells (oocytes) at birth, as well as the shaping of fingers and vestigial organs in humans and other animals. Sydney Brenner, H. Robert Horvitz, and John E.

Format: Articles

Subject: Theories

Green Fluorescent Protein

Green fluorescent protein (GFP) is a protein in the jellyfish Aequorea Victoria that exhibits green fluorescence when exposed to light. The protein has 238 amino acids, three of them (Numbers 65 to 67) form a structure that emits visible green fluorescent light. In the jellyfish, GFP interacts with another protein, called aequorin, which emits blue light when added with calcium. Biologists use GFP to study cells in embryos and fetuses during developmental processes.

Format: Articles

Subject: Technologies

The Meselson-Stahl Experiment (1957–1958), by Matthew Meselson and Franklin Stahl

In an experiment later named for them, Matthew Stanley Meselson and Franklin William Stahl in the US demonstrated during the 1950s the semi-conservative replication of DNA, such that each daughter DNA molecule contains one new daughter subunit and one subunit conserved from the parental DNA molecule. The researchers conducted the experiment at California Institute of Technology (Caltech) in Pasadena, California, from October 1957 to January 1958.

Format: Articles

Subject: Processes, Experiments

Equilibrium Density Gradient Centrifugation in Cesium Chloride Solutions Developed by Matthew Meselson and Franklin Stahl

Matthew Meselson, Franklin Stahl, and Jerome Vinograd, developed cesium chloride, or CsCl, density gradient centrifugation in the 1950s at the California Institute of Technology, or Caltech, in Pasadena, California. Density gradient centrifugation enables scientists to separate substances based on size, shape, and density. Meselson and Stahl invented a specific type of density gradient centrifugation, called isopycnic centrifugation that used a solution of cesium chloride to separate DNA molecules based on density alone.

Format: Articles

Subject: Technologies

Victor Ambros (1953-)

Victor Ambros is a professor of molecular medicine at the University of Massachusetts Medical School, and he discovered the first microRNA (miRNA) in 1993. Ambros researched the genetic control of developmental timing in the nematode worm Caenorhabditis elegans and he helped describe gene function and regulation during the worm’s development and embryogenesis. His discovery of miRNA marked the beginning of research into a form of genetic regulation found throughout diverse life forms from plants to humans. Ambros is a central figure in the miRNA and C.

Format: Articles

Subject: People

The Y-Chromosome in Animals

The Y-chromosome is one of a pair of chromosomes that determine the genetic sex of individuals in mammals, some insects, and some plants. In the nineteenth and twentieth centuries, the development of new microscopic and molecular techniques, including DNA sequencing, enabled scientists to confirm the hypothesis that chromosomes determine the sex of developing organisms. In an adult organism, the genes on the Y-chromosome help produce the male gamete, the sperm cell. Beginning in the 1980s, many studies of human populations used the Y-chromosome gene sequences to trace paternal lineages.

Format: Articles

Subject: Reproduction, Theories

Regeneration

Regeneration is a fascinating phenomenon. The fact that many organisms have the capacity to regenerate lost parts and even remake complete copies of themselves is difficult to fathom; so difficult, in fact, that for a very long time people were reluctant to believe regeneration actually took place. It seemed unbelievable that some organisms could re-grow lost limbs, organs, and other body parts. If only we could do the same!

Format: Articles

Subject: Processes

Shoukhrat Mitalipov and Masahito Tachibana's Mitochondrial Gene Replacement Therapy Technique

In 2009, Shoukhrat Mitalipov, Masahito Tachibana, and their team of researchers developed the technology of mitochondrial gene replacement therapy to prevent the transmission of a mitochondrial disease from mother to offspring in primates. Mitochondria contain some of the body's genetic material, called mitochondrial DNA. Occasionally, the mitochondrial DNA possesses mutations.

Format: Articles

Subject: Technologies

Using Digital PCR to Detect Fetal Chromosomal Aneuploidy in Maternal Blood (2007)

In 2007, Dennis Lo and his colleagues used digital polymerase chain reaction or PCR to detect trisomy 21 in maternal blood, validating the method as a means to detect fetal chromosomal aneuploidies, or an abnormal number of chromosomes in a cell. The team conducted their research at the Chinese University of Hong Kong in Hong Kong, Hong Kong, and at the Boston University in Boston, Massachusetts.

Format: Articles

Subject: Experiments

James David Ebert (1921-2001)

James David Ebert studied the developmental processes of chicks and of viruses in the US during the twentieth century. He also helped build and grow many research institutions, such as the Department of Embryology in the Carnegie Institution of Washington in Baltimore, Maryland and the Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts. When few biologists studied the biochemistry of embryos, Ebert built programs and courses around the foci of biochemistry and genetics, especially with regards to embryology.

Format: Articles

Subject: People

Hedgehog Signaling Pathway

The hedgehog signaling pathway is a mechanism that directs the development of embryonic cells in animals, from invertebrates to vertebrates. The hedgehog signaling pathway is a system of genes and gene products, mostly proteins, that convert one kind of signal into another, called transduction. In 1980, Christiane Nusslein-Volhard and Eric F. Wieschaus, at the European Molecular Biology Laboratory in Heidelberg, Germany, identified several fruit fly (Drosophila melanogaster) genes.

Format: Articles

Subject: Processes

"The Development of the Turtle Carapace" (1989), by Ann Campbell Burke

Ann Campbell Burke examines the development and evolution of vertebrates, in particular, turtles. Her Harvard University experiments, described in Development of the Turtle Carapace: Implications for the Evolution of a Novel Bauplan, were published in 1989. Burke used molecular techniques to investigate the developmental mechanisms responsible for the formation of the turtle shell.

Format: Articles

Subject: Experiments, Publications

Wolbachia

Bacteria of the genus Wolbachia are
bacteria that live within the cells of their hosts. They infect a
wide range of arthropods (insects, arachnids, and crustaceans) and
some nematodes (parasitic roundworms). Scientists estimate that
Wolbachia exist in between seventeen percent and seventy-six percent of
arthropods and nematodes. The frequency of the bacteria makes them
one of the most widespread parasites. In general, they are divided
into five groups, from A to E, depending of the species of their

Format: Articles

Subject: Organisms

Beadle and Ephrussi's Transplantation Technique for Drosophila

Boris Ephrussi and George Wells Beadle developed a transplantation technique on flies, Drosophila melanogaster, which they described in their 1936 article A Technique of Transplantation for Drosophila. The technique of injecting a tissue from one fly larva into another fly larva, using a micropipette, to grow that tissue in the second larvae, was a means for investigating development of Drosophila. Through this technique, Beadle and Ephrussi studied the role of genes in embryological processes.

Format: Articles

Subject: Technologies

Frank Rattray Lillie's Study of Freemartins (1914-1920)

Frank Rattray Lillie's research on freemartins from 1914 to 1920 in the US led to the theory that hormones partly caused for sex differentiation in mammals. Although sometimes applied to sheep, goats, and pigs, the term freemartin most often refers to a sterile cow that has external female genitalia and internal male gonads and was born with a normal male twin.

Format: Articles

Subject: Experiments

Beadle and Ephrussi Show that Something Besides Eye Tissue Determines Eye Color in Fruit Flies

In the 1930s, George Beadle and Boris Ephrussi discovered factors that affect eye colors in developing fruit flies. They did so while working at the California Institute of Technology in Pasadena, California. (1) They took optic discs (colored fuchsia in the image) from fruit fly larvae in the third instar stage of development. Had the flies not been manipulated, they would have developed into adults with vermilion eyes.

Format: Graphics

Subject: Experiments, Organisms

Mitochondria

All cells that have a nucleus, including plant, animal, fungal cells, and most single-celled protists, also have mitochondria. Mitochondria are particles called organelles found outside the nucleus in a cell's cytoplasm. The main function of mitochondria is to supply energy to the cell, and therefore to the organism. The theory for how mitochondria evolved, proposed by Lynn Margulis in the twentieth century, is that they were once free-living organisms.

Format: Articles

Subject: Organisms, Theories

Temperature-Dependent Sex Determination in Reptiles

The sex of a reptile embryo partly results from the production of sex hormones during development, and one process to produce those hormones depends on the temperature of the embryo's environment. The production of sex hormones can result solely from genetics or from genetics in combination with the influence of environmental factors. In genotypic sex determination, also called genetic or chromosomal sex determination, an organism's genes determine which hormones are produced.

Format: Articles

Subject: Experiments

Libbie Henrietta Hyman (1888-1969)

Libbie Henrietta Hyman was born into a recently immigrated Jewish family on 6 December 1888 in Des Moines, Iowa. One of many siblings and daughter to parents Sabina Neumann and Joseph Hyman, who did not particularly support her interests in science, Hyman excelled in school and indulged her interests in biology in her free time. From a young age, Hyman collected and cataloged flora around her home. Despite being valedictorian of her high school class, Hyman's first job was labeling cereal boxes in a local factory.

Format: Articles

Subject: People

The Effects of Gene Regulation on Aging in Caenorhabditis elegans (2003)

In 2003, molecular biology and genetics researchers Coleen T. Murphy, Steven A. McCarroll, Cornelia I. Bargmann, Andrew Fraser, Ravi S. Kamath, Julie Ahringer, Hao Li, and Cynthia Kenyon conducted an experiment that investigated the cellular aging in, Caenorhabditis elegans (C. elegans) nematodes. The researchers investigated the interactions between the transcription factor DAF-16 and the genes that regulate the production of an insulin-like growth factor 1 (IGF-1-like) protein related to the development, reproduction, and aging in C. elegans.

Format: Articles

Subject: Experiments

Beadle and Ephrussi’s Technique to Transplant Optic Discs between Fruit Fly Larvae

In 1935, George Beadle and Boris Ephrussi developed a technique to transplant optic discs between fruit fly larvae. They developed it while at the California Institute of Technology in Pasedena, California. Optic discs are tissues from which the adult eyes develop. Beadle and Ephrussi used their technique to study the development of the eye and eye pigment. (1) The experimenter dissects a donor larva, which is in the third instar stage of development, and removes the optic disc (colored red) with a micropipette.

Format: Graphics

Subject: Technologies, Experiments, Organisms