Search
Filter by Topic
- (-) Remove Processes filter Processes
- Theories (27) Apply Theories filter
- Reproduction (17) Apply Reproduction filter
- Organisms (9) Apply Organisms filter
- Technologies (7) Apply Technologies filter
- Disorders (4) Apply Disorders filter
- Ethics (4) Apply Ethics filter
- Experiments (3) Apply Experiments filter
- Publications (3) Apply Publications filter
The Carapacial Ridge of Turtles
Two main elements characterize the skeletal morphology of turtles: the carapace and the plastron. For a turtle, the carapacial ridge begins in the embryo as a bulge posterior to the limbs but on both sides of the body. Such outgrowths are the first indication of shell development in turtle embryos. While the exact mechanisms underpinning the formation of the carapacial ridge are still not entirely known, some biologists argue that understanding these embryonic mechanisms is pivotal to explaining both the development of turtles and their evolutionary history.
Format: Articles
Subject: Processes
Human Embryonic Stem Cells
Stem cells are undifferentiated cells that are capable of dividing for long periods of time and can give rise to specialized cells under particular conditions. Embryonic stem cells are a particular type of stem cell derived from embryos. According to US National Institutes of Health (NIH), in humans, the term "embryo" applies to a fertilized egg from the beginning of division up to the end of the eighth week of gestation, when the embryo becomes a fetus. Between fertilization and the eighth week of gestation, the embryo undergoes multiple cell divisions.
Format: Articles
Subject: Processes, Reproduction
Tissue Engineering
Tissue engineering is a field of regenerative medicine that integrates the knowledge of scientists, physicians, and engineers into the construction or reconstruction of human tissue. Practitioners of tissue engineering seek to repair, replace, maintain, and enhance the abilities of a specific tissue or organ by means of living cells. More often than not stem cells are the form of living cells used in this technology. Tissue engineering is one of the disciplines involved in translating knowledge of developmental biology into the clinical setting.
Format: Articles
Subject: Processes
Gastrulation in Xenopus
The process of gastrulation allows for the formation of the germ layers in metazoan embryos, and is generally achieved through a series of complex and coordinated cellular movements. The process of gastrulation can be either diploblastic or triploblastic. In diploblastic organisms like cnidaria or ctenophora, only the endoderm and the ectoderm form; in triploblastic organisms (most other complex metazoans), triploblastic gastrulation produces all three germ layers.
Format: Articles
Subject: Processes
Circulatory Changes at Birth
When placental mammals are born their circulatory systems undergo radical changes as the newborns are prepared for independent life. The lungs are engaged, becoming the primary source of fresh oxygen, replacing the placental barrier as a means for blood-gas exchange.
Format: Articles
Subject: Processes
Fetal Programming
Fetal programming, or prenatal programming, is a concept that suggests certain events occurring during critical points of pregnancy may cause permanent effects on the fetus and the infant long after birth. The concept of fetal programming stemmed from the fetal origins hypothesis, also known as Barker’s hypothesis, that David Barker proposed in 1995 at the University of Southampton in Southampton, England.
Format: Articles
Subject: Processes, Theories, Reproduction
Multiplex Automated Genome Engineering (MAGE)
Multiplex Automated Genome Engineering, or MAGE, is a genome editing technique that enables scientists to quickly edit an organism’s DNA to produce multiple changes across the genome. In 2009, two genetic researchers at the Wyss Institute at Harvard Medical School in Boston, Massachusetts, Harris Wang and George Church, developed the technology during a time when researchers could only edit one site in an organism’s genome at a time.
Format: Articles
Subject: Technologies, Processes
A Fate Map of the Chick Embryo
A 3-D fate map of the chicken (Gallus gallus) embryo with the prospective point of ingression and yolk. The area where the primitive streak will form during gastrulation is shown. The anterior- posterior axis is shown by labeling the anterior and posterio ends (A) and (P). Different colors indicate prospective fates of different regions of the epiblast after gastrulation.
Format: Graphics
The Blastoderm in Chicks During Early Gastrulation
This image shows a chicken (Gallus gallus) embryo undergoing gastrulation in stage four (18-19 hrs after laying) according to the Hamburger-Hamilton staging series. At this point in time the chicken embryo is a blastoderm (shown in blue). The first magnification of the embryo shows that the blastoderm cell layers have thickened to form the primitive streak and Hensen's node. The primitive streak extends from the posterior (P) region to the anterior (A) region. The second rectangular magnification shows the blastoderm cross-sectioned through the primitive streak.
Format: Graphics
Estrogen
The figure depicts three different molecular structures of estrogen found in mammals’ that differ by the arrangement of bonds and side groups. The molecular structures of the three estrogen molecules differ by the arrangement of chemical bonds and side groups attached to the core steroid structure, cholesterol, which contains three cyclohexane rings and one cyclopentane ring.
Format: Graphics
Subject: Theories, Processes, Reproduction
Mitochondria
Mitochondria are organelles found in the cytoplasm of eukaryotic cells. They are composed of an outer membrane and an inner membrane. The outer membrane faces the cellular cytoplasm, while the inner membrane folds back on itself multiple times, forming inner folds, called cristae. The space between the two membrane layers is called the intermembrane space, and the space within the inner membrane is called the matrix.
Format: Graphics
DNA and X and Y Chromosomes
Y-chromosomes exist in the body cells of many kinds of male animals. Found in the nucleus of most living animal cells, the X and Y-chromosomes are condensed structures made of DNA wrapped around proteins called histones. The individual histones bunch into groups that the coiled DNA wraps around called a nucleosome, which are roughly 10 nano-meters (nm) across. The histones bunch together to form a helical fiber (30 nm) that spins into a supercoil (200 nm). During much of a cell's life, DNA exists in the 200 nm supercoil phase.
Format: Graphics
Chloroplasts
Chloroplasts are the organelles in plant and algal cells that conduct photosynthesis. A single chloroplast has an outer membrane and an inner membrane, with an intermembrane space in between. Within the inner membrane, interconnected stacks of thylakoids, called granum, float in a protein rich fluid called the stroma. These thylakoid stacks contain chlorophyll, a pigment which converts sunlight into usable energy for plants and free oxygen from water. The stacks are sites of light reactions within a plant cell.
Format: Graphics
Neurospora crassa Life Cycle
This diagram shows the life cycle of Neurospora crassa, a mold that grows on bread. N. crassa can reproduce through an asexual cycle or a sexual cycle. The asexual cycle (colored as a purple circle), begins in this figure with (1a) vegetative mycelium, which are strands of mature fungus. Some of the strands form bulbs (2a) in a process called conidiation. From those bulbs develop the conidia, which are spores. Next, (3a) a single conidium separates from its strand and elongates until it forms mycelium.
Format: Graphics
Beadle's One Gene-One Enzyme Hypothesis
Between 1934 and 1945, George Beadle developed a hypothesis that each gene within the chromosomes of organisms each produced one enzyme. Enzymes are types of proteins that can catalyze reactions inside cells, and the figure shows that each enzyme controls a stage in a series of biochemical reactions. The top box in this figure represents a normal process of enzyme production and biochemical reactions, and the bottom box shows how Beadle's experiments affected the normal biochemical process.
Format: Graphics
Fruit Fly Life Cycle
Fruit flies of the species Drosophila melanogaster develop from eggs to adults in eight to ten days at 25 degrees Celsius. They develop through four primary stages: egg, larva, pupa, and adult. When in the wild, female flies lay their fertilized eggs in rotting fruit or other decomposing material that can serve as food for the larvae. In the lab, fruit flies lay their fertilized eggs in a mixture of agar, molasses, cornmeal, and yeast. After roughly a day, each egg hatches into a larva.
Format: Graphics
The Process of Gastrulation in Frog Embryos
Illustration of the movement of the three hemispheres of cells, the animal cap (dark green) the marginal zone (lime green) and the ventral cap (yellow) during frog gastrulation. The external view column (images a.1-a.6) shows gastrulation as it occurs on the outside of the embryo. The cross-section view column (images b.1-b.6) shows the internal view of gastrulation. The cross-sections are through the middle of the embryo.
Format: Graphics
Frog Embryo in the Blastula Stage
Illustration of the animal-vegetal gradient in Xenopus laevis ( African clawed frog) eggs after fertilization. During fertilization, the sperm s point of entry determines the future dorsal side (shaded) and ventral side (unshaded) of the embryo. The prospective ventral side of the embryo forms on the side where the sperm enters while the prospective dorsal side forms opposite the sperm s point of entry.
Format: Graphics
Mechanism of Notch Signaling
Mechanism of Notch Signaling: The image depicts a type of cell signaling, in which two animal cells interact and transmit a molecular signal from one to the other. The process results in the production of proteins, which influence the cells as they differentiate, move, and contribute to embryological development. In the membrane of the signaling cell, there is a ligand (represented by a green oval). The ligand functions to activate a change in a receptor molecule. In the receiving cell, there are receptors; in this case, Notch proteins (represented by orange forks).
Format: Graphics
The Development of the Neural Crest and the Migration of Neural Crest Cells (NCCs) in the Embryos of Various Vertebrates
This diagram shows how NCCs migrate differently in rats, birds and amphibians. The arrows represent both chronology of NCCs migration and the differential paths that NCCs follow in different classes of animals. The solid black portion of each illustration represents the neural crest, and the large black dots in (c) and in (f) represent the neural crest cells. The speckled sections that at first form a basin in (a) and then close to form a tube in (f) represent the neural ectoderm. The solid white portions represent the epidermal ectoderm.
Format: Graphics
Some of the Cells that Arise from Animal Gastrulas with Three Germ Layers
From a developing embryos three primary germ layers, ectoderm (green), mesoderm (pink) and endoderm (yellow), a variety of differentiated cell types and organ systems arise, far more than are shown here. The three primary germ layers are shown during the gastrula stage because they become distinct at the gastrula stage. The germ cells (blue) are pre- cursors to sperm and egg cells, and they are set aside early in development, and are thought to arise from the ectoderm.
Format: Graphics
Essay: Homology
Homology is a central concept of comparative and evolutionary biology, referring to the presence of the same bodily parts (e.g., morphological structures) in different species. The existence of homologies is explained by common ancestry, and according to modern definitions of homology, two structures in different species are homologous if they are derived from the same structure in the common ancestor.
Format: Essays and Theses
Subject: Processes
Mechanistic Realization of the Turtle Shell
Turtle morphology is unlike that of any other vertebrate. The uniqueness of the turtle's bodyplan is attributed to the manner in which the turtle's ribs are ensnared within its hard upper shell. The exact embryological and genetic mechanisms underpinning this peculiar anatomical structure are still a matter of debate, but biologists agree that the evolution of the turtle shell lies in the embryonic development of the turtle.
Format: Articles
Subject: Processes
Slime Mold Video
This video is composed of a sequence of films created by John Tyler Bonner in the 1940s to show the life cycle of the cellular slime mold Dictyostelium discoideum. As only the second person to study slime molds, Bonner frequently encountered audiences who had never heard of, let alone seen, the unusual organism.
Format: Articles
Subject: Processes
Julia Barlow Platt's Embryological Observations on Salamanders' Cartilage (1893)
In 1893, Julia Barlow Platt published her research on the origins of cartilage in the developing head of the common mudpuppy (Necturus maculosus) embryo. The mudpuppy is an aquatic salamander commonly used by embryologists because its large embryonic cells and nuclei are easy to see. Platt followed the paths of cells in developing mudpuppy embryos to see how embryonic cells migrated during the formation of the head. With her research, Platt challenged then current theories about germ layers, the types of cells in an early embryo that develop into adult cells.
Format: Articles
Subject: Experiments, Theories, Processes