Search

Displaying 1 - 25 of 103 items.

Pages

Thesis: How Purported Scientific Failures Have Led to Advancements in IVF

This thesis shows us the history of how some of the first attempts at IVF in humans using various options such as donated egg cells and cryopreserved embryos, often ended in early miscarriages. At that time, most members of the scientific community and general public responded to those trials by regarding them as insignificant. In 1998, the success rate of women under the age of 38 having children with the use of IVF was 22.1%. Over time, scientists began to acknowledge those published findings that detailed various “failed” human IVF experiments.

Format: Essays and Theses

Subject: Publications, Technologies, Experiments, Reproduction, Outreach

Thesis: Human Preconception Sex Selection: Informing the Public of Sex Selection Methods and Ethical Considerations

By questioning methods of sex selection since their early development, and often discovering that they are unreliable, scientists have increased the creative and technological capacity of the field of reproductive health. The presentation of these methods to the public, via published books on timing methods and company websites for sperm sorting, increased interest in, and influence of, sex selection within the global society.

Format: Essays and Theses

Subject: Technologies, Ethics

Thesis: Surviving Cervical Cancer: A History of Prevention, Early Detection, and Treatment

This thesis answers the following question: How does the history of cervical cancer show that prevention helps reduce rates of cancer-related deaths among women? By studying the history of cervical cancer, people can understand how a cancer that was once one of the top killers of women in the US has declined to become one of the lowest through the establishment of and effective communication of early prevention and diagnostics, both among the general public and within the medical community itself.

Format: Essays and Theses

Subject: Technologies, Outreach

ABO Blood Type Identification and Forensic Science (1900-1960)

The use of blood in forensic analysis is a method for identifying individuals suspected of committing some kinds of crimes. Paul Uhlenhuth and Karl Landsteiner, two scientists working separately in Germany in the early twentieth century, showed that there are differences in blood between individuals. Uhlenhuth developed a technique to identify the existence of antibodies, and Landsteiner and his students showed that humans had distinctly different blood types called A, B, AB, and O.

Format: Articles

Subject: Theories, Legal, Technologies

Stanley Paul Leibo (1937–2014)

Stanley Paul Leibo studied the cryopreservation of embryos in the US in the twentieth century. Cryopreservation is a method of preserving biological material through freezing. Early in his career, Leibo collaborated with other scientists to study why cells were oftentimes injured during freezing. Later, Leibo and his team accomplished one of the first successful births using previously-frozen mammalian embryos.

Format: Articles

Subject: People, Technologies

Revive & Restore’s Woolly Mammoth Revival Project

In 2015, Revive & Restore launched the Woolly Mammoth Revival Project with a goal of engineering a creature with genes from the woolly mammoth and introducing it back into the tundra to combat climate change. Revive & Restore is a nonprofit in California that uses genome editing technologies to enhance conservation efforts in sometimes controversial ways.

Format: Articles

Subject: Theories, Technologies, Organizations, Ethics

Embryo Blotting Paper Models

Anatomical models have always been a mainstay of descriptive embryology. As the training of embryologists grew in the late 1800s, so too did the need for large-scale teaching models. Embryo wax models, such as those made by Adolf Ziegler and Gustav Born, were popular in the latter part of the nineteenth century and the early twentieth century as a way to visualize, in three dimensions, the fine detail of embryos without the aid of a microscope.

Format: Articles

Subject: Technologies

Induced Pluripotent Stem Cells

Induced Pluripotent Stem Cells (iPSCs) are cells derived from non-pluripotent cells, such as adult somatic cells, that are genetically manipulated so as to return to an undifferentiated, pluripotent state. Research on iPSCs, initiated by Shinya Yamanaka in 2006 and extended by James Thompson in 2007, has so far revealed the same properties as embryonic stem cells (ESCs), making their discovery potentially very beneficial for scientists and ethicists alike.

Format: Articles

Subject: Technologies

Thesis: Growing Human Organs in Animals: Interspecies Blastocyst Complementation as a Potential Solution for Organ Transplant Limitations

To address the progression of immune-related constraints on organ transplantation, the first part of this thesis contains a historical analysis tracing early transplant motivations and the events that led to the discoveries broadly related to tolerance, rejection, and compatibility. Despite the advancement of those concepts over time, this early history shows that immunosuppression was one of the earliest limiting barriers to successful organ transplantation, and remains one of the most significant technical challenges.

Format: Essays and Theses

Subject: Technologies

Light Therapy for Neonatal Jaundice

Light therapy, also called phototherapy, exposes infants with jaundice, a yellowing of the skin and eyes, to artificial or natural light to break down the buildup of bilirubin pigment in the blood. Bilirubin is an orange to red pigment produced when red blood cells break down, which causes infants to turn into a yellowish color. Small amounts of bilirubin in the blood are normal, but when there is an accumulation of excess bilirubin pigment, the body deposits the excess bilirubin in the layer of fat beneath the skin.

Format: Articles

Subject: Technologies

Green Fluorescent Protein

Green fluorescent protein (GFP) is a protein in the jellyfish Aequorea Victoria that exhibits green fluorescence when exposed to light. The protein has 238 amino acids, three of them (Numbers 65 to 67) form a structure that emits visible green fluorescent light. In the jellyfish, GFP interacts with another protein, called aequorin, which emits blue light when added with calcium. Biologists use GFP to study cells in embryos and fetuses during developmental processes.

Format: Articles

Subject: Technologies

Susceptibility Assay

Charles Manning Child designed an experimental test, the susceptibility assay, to measure the effects of different toxins on developmental processes. The susceptibility assay measured an organism s vulnerability to death when it was submerged in a noxious solution. The assay involved immersing an organism in a solution that contained a depressant or inhibitory substance, such as alcohol, and then measuring the responses of the organism. Child interpreted these measurements as revealing information about the relative levels of metabolic activity within the organism.

Format: Articles

Subject: Technologies

Gunther von Hagens' Plastination Technique

Plastination is a technique for preserving tissues, organs, and whole bodies for medical purposes and public display. Gunther von Hagens invented a form of the method in 1977 at Heidelberg University in Heidelberg, Germany after observing medical students struggle working with cadavers that quickly decomposed. Von Hagens' body models, referred to as plastinates, have since become widely used educational tools not only for those studying anatomy and medicine, but also for the general public.

Format: Articles

Subject: Technologies

Cerebral Organoid as a Model System in the Study of Microcephaly

Scientists use cerebral organoids, which are artificially produced miniature organs that represent embryonic or fetal brains and have many properties similar to them, to help them study developmental disorders like microcephaly. In human embryos, cerebral tissue in the form of neuroectoderm appears within the first nine weeks of human development, and it gives rise to the brain and spinal cord.

Format: Articles

Subject: Technologies

The Game of Life, by John Horton Conway

The Game of Life, or just Life, is a one-person game that was created by the English mathematician John Horton Conway in the late 1960s. It is a simple representation of birth, death, development, and evolution in a population of living organisms, such as bacteria. Martin Gardner popularized the Game of Life by writing two articles for his column "Mathematical Games" in the journal Scientific American in 1970 and 1971. There exist several websites that provide the Game of Life as a download or as an online game.

Format: Articles

Subject: Technologies

Hanging Drop Tissue Culture

The hanging drop tissue culture is a technique utilized in embryology and other fields to allow growth that would otherwise be restricted by the flat plane of culture dishes and also to minimize the surface area to volume ratio, slowing evaporation. The classic hanging drop culture is a small drop of liquid, such as plasma or some other media allowing tissue growth, suspended from an inverted watch glass. The hanging drop is then suspended by gravity and surface tension, rather than spreading across a plate.

Format: Articles

Subject: Technologies

Magnetic Resonance Microscopy (MRM)

Magnetic Resonance Microscopy (MRM) is an imaging method that allows the visualization of internal body structures. Using powerful magnets to send energy into cells, MRM picks up signals from inside a specimen and translates them into detailed computer images. MRM is a useful tool for scientists because of its ability to generate digital slices of scanned specimens that can be constructed into virtual 3D images without destroying the specimens. MRM has become an increasingly prevalent imaging technique in embryological studies.

Format: Articles

Subject: Technologies

Ooplasmic Transfer Technology

Ooplasmic transfer, also called cytoplasmic transfer, is an outside the body, in vitro fertilization (IVF) technique. Ooplasmic transfer in humans (Homo sapiens) is similar to in vitro fertilization (IVF), with a few additions. IVF is the process in which doctors manually combine an egg and sperm cells in a laboratory dish, as opposed to artificial insemination, which takes place in the female's body. For ooplasmic transfer, doctors withdraw cytoplasm from a donor's oocyte, and then they inject that cytoplasm with sperm into a patient's oocyte.

Format: Articles

Subject: Technologies

Gardasil HPV Vaccination Series

In 2006, United States pharmaceutical company Merck released the Gardasil vaccination series, which protected recipients against four strains of Human Papillomaviruses, or HPV. HPV is a sexually transmitted infection which may be asymptomatic or cause symptoms such as genital warts, and is linked to cervical, vaginal, vulvar, anal, penile, head, neck, and face cancers.

Format: Articles

Subject: Technologies

Shoukhrat Mitalipov and Masahito Tachibana's Mitochondrial Gene Replacement Therapy Technique

In 2009, Shoukhrat Mitalipov, Masahito Tachibana, and their team of researchers developed the technology of mitochondrial gene replacement therapy to prevent the transmission of a mitochondrial disease from mother to offspring in primates. Mitochondria contain some of the body's genetic material, called mitochondrial DNA. Occasionally, the mitochondrial DNA possesses mutations.

Format: Articles

Subject: Technologies

Equilibrium Density Gradient Centrifugation in Cesium Chloride Solutions Developed by Matthew Meselson and Franklin Stahl

Matthew Meselson, Franklin Stahl, and Jerome Vinograd, developed cesium chloride, or CsCl, density gradient centrifugation in the 1950s at the California Institute of Technology, or Caltech, in Pasadena, California. Density gradient centrifugation enables scientists to separate substances based on size, shape, and density. Meselson and Stahl invented a specific type of density gradient centrifugation, called isopycnic centrifugation that used a solution of cesium chloride to separate DNA molecules based on density alone.

Format: Articles

Subject: Technologies

The Ponseti Method to Treat Club Foot

Ignacio Vives Ponseti developed a noninvasive method for treating congenital club foot in the US during the late 1940s. Congenital club foot is a birth deformity in which one or both of an infant's feet are rotated inward beneath the ankle, making normal movement rigid and painful. Ponseti developed a treatment method, later called the Ponseti method, that consisted of a series of manipulations and castings of the club foot performed in the first few months of life.

Format: Articles

Subject: Technologies

Acid Dissolution of Fossil Dinosaur Eggs

Acid dissolution is a technique of removing a fossil from the surrounding rock matrix in which it is encased by dissolving that matrix with acid. Fossilized bone, though strong enough to be preserved for thousands or millions of years, is often more delicate than rock. Once a fossil is discovered, scientists must remove the fossil from its surroundings without damaging the fossil itself.

Format: Articles

Subject: Technologies

Hematopoietic Stem Cell Transplantation

The purpose of regenerative medicine, especially tissue engineering, is to replace damaged tissue with new tissue that will allow the body to resume normal function. The uniqueness of tissue engineering is that it can restore normal structure in addition to repairing tissue function, and is often accomplished using stem cells. The first type of tissue engineering using stem cells was hematopoietic stem cell transplantation (HSCT), a surgical procedure in which hematopoietic stem cells (HSCs) are infused into a host to treat a variety of blood diseases, cancers, and immunodeficiencies.

Format: Articles

Subject: Technologies

Beadle and Ephrussi's Transplantation Technique for Drosophila

Boris Ephrussi and George Wells Beadle developed a transplantation technique on flies, Drosophila melanogaster, which they described in their 1936 article A Technique of Transplantation for Drosophila. The technique of injecting a tissue from one fly larva into another fly larva, using a micropipette, to grow that tissue in the second larvae, was a means for investigating development of Drosophila. Through this technique, Beadle and Ephrussi studied the role of genes in embryological processes.

Format: Articles

Subject: Technologies

Pages