Search
Filter by Topic
- (-) Remove Processes filter Processes
- Reproduction (21) Apply Reproduction filter
- Theories (11) Apply Theories filter
- Publications (8) Apply Publications filter
- Disorders (7) Apply Disorders filter
- Technologies (7) Apply Technologies filter
- Ethics (5) Apply Ethics filter
- Experiments (4) Apply Experiments filter
- People (3) Apply People filter
- Organisms (1) Apply Organisms filter
- Organizations (1) Apply Organizations filter
Filter by Format
- (-) Remove Articles filter Articles
Biological Sex and Gender in the United States
In the United States, most people are assigned both a biological sex and gender at birth based on their chromosomes and reproductive organs. However, there is an important distinction between biological sex and gender. Biological sex, such as male, female, or intersex, commonly refers to physical characteristics. Gender refers to the socially constructed roles, behaviors, and actions people take on, usually in relation to expectations of masculinity or femininity. As of 2022, there is disagreement over the relation between sex and gender.
Format: Articles
Subject: Organizations, People, Processes, Ethics
Inducing Fertilization and Development in Sand Dollars
Sand dollars are common marine invertebrates in the phylum Echinodermata and share the same class (Echinoidea) as sea urchins. They have served as model laboratory organisms for such embryologists as Frank Rattray Lillie and Ernest Everett Just. Both Lillie and Just used Echinarachnius parma for their studies of egg cell membranes and embryo development at the Marine Biological Laboratory (MBL) at Woods Hole, Massachusetts, in the early 1900s.
Format: Articles
Subject: Processes
Intraspecies Chimeras Produced in Laboratory Settings (1960-1975)
When cells-but not DNA-from two or more genetically distinct individuals combine to form a new individual, the result is called a chimera. Though chimeras occasionally occur in nature, scientists have produced chimeras in a laboratory setting since the 1960s. During the creation of a chimera, the DNA molecules do not exchange genetic material (recombine), unlike in sexual reproduction or in hybrid organisms, which result from genetic material exchanged between two different species. A chimera instead contains discrete cell populations with two unique sets of parental genes.
Format: Articles
Regeneration
Regeneration is a fascinating phenomenon. The fact that many organisms have the capacity to regenerate lost parts and even remake complete copies of themselves is difficult to fathom; so difficult, in fact, that for a very long time people were reluctant to believe regeneration actually took place. It seemed unbelievable that some organisms could re-grow lost limbs, organs, and other body parts. If only we could do the same!
Format: Articles
Subject: Processes
Epidermal Growth Factor
Epidermal growth factor is a signaling molecule that stimulates the growth of epidermal tissues during development and throughout life. Stanley Cohen discovered epidermal growth factor (EGF) during studies of nerve growth factor as a side effect of other experiments. EGF stimulates tissue growth by initiating a variety of cellular mechanisms. This work led to the 1986 Nobel Prize in Physiology or Medicine awarded to Cohen and Rita Levi-Montalcini.
Format: Articles
Subject: Processes
Biological Clocks and the Formation of Human Tooth Enamel
Tooth enamel contains relics of its formation process, in the form of microstructures, which indicate the incremental way in which it forms. These microstructures, called cross-striations and striae of Retzius, develop as enamel-forming cells called ameloblasts, whcih cyclically deposit enamel on developing teeth in accordance with two different biological clocks. Cross-striations result from a twenty-four hour cycle, called a Circadian rhythm, in the enamel deposition process, while striae of Retzius have a longer periodicity.
Format: Articles
Subject: Processes
Hedgehog Signaling Pathway
The hedgehog signaling pathway is a mechanism that directs the development of embryonic cells in animals, from invertebrates to vertebrates. The hedgehog signaling pathway is a system of genes and gene products, mostly proteins, that convert one kind of signal into another, called transduction. In 1980, Christiane Nusslein-Volhard and Eric F. Wieschaus, at the European Molecular Biology Laboratory in Heidelberg, Germany, identified several fruit fly (Drosophila melanogaster) genes.
Format: Articles
Subject: Processes
The French Flag Model
The French flag model represents how embryonic cells receive and respond to genetic information and subsequently differentiate into patterns. Created by Lewis Wolpert in the late 1960s, the model uses the French tricolor flag as visual representation to explain how embryonic cells can interpret genetic code to create the same pattern even when certain pieces of the embryo are removed. Wolpert's model has provided crucial theoretical framework for investigating universal mechanisms of pattern formation during development.
Format: Articles
“Pregnancy Established in an Infertile Patient After Transfer of a Donated Embryo Fertilized In Vitro” (1983), by Alan Trounson, John Leeton, Mandy Besanko, Carl Wood, and Angelo Conti
In 1983, researchers Alan Trounson, John Leeton, Carl Wood, Mandy Besanko, and Angelo Conti published the article “Pregnancy Established in an Infertile Patient After Transfer of a Donated Embryo Fertilized In Vitro” in The British Medical Journal. In the article, the authors discuss one of the first successful experiments using in vitro fertilization, or IVF, with the use of a human donor embryo at the Monash University and Queen Victoria Medical Center in Melbourne, Australia.
Format: Articles
Subject: Publications, Publications, Reproduction, Processes
Somatic Cell Nuclear Transfer in Mammals (1938-2013)
In the second half of the
twentieth century, scientists learned how to clone organisms in some
species of mammals. Scientists have applied somatic cell nuclear transfer to clone human and
mammalian embryos as a means to produce stem cells for laboratory
and medical use. Somatic cell nuclear transfer (SCNT) is a technology applied in cloning, stem cell
research and regenerative medicine. Somatic cells are cells that
have gone through the differentiation process and are not germ
cells. Somatic cells donate their nuclei, which scientists
Format: Articles
Subject: Theories, Technologies, Processes
Reassessment of Carrel's Immortal Tissue Culture Experiments
In the 1910s, Alexis Carrel, a French surgeon and biologist, concluded that cells are intrinsically immortal. His claim was based on chick-heart tissue cultures in his laboratory that seemed to be able to proliferate forever. Carrel's ideas about cellular immortality convinced his many contemporaries that cells could be maintained indefinitely. In the 1960s, however, Carrel's thesis about cell immortality was put into question by the discovery that human diploid cells can only proliferate for a finite period.
Format: Articles
Gastrulation in Mus musculus (common house mouse)
As mice embryos develop, they undergo a stage of development called gastrulation. The hallmark of vertebrate gastrulation is the reorganization of the inner cell mass (ICM) into the three germ layers: ectoderm, mesoderm, and endoderm. Mammalian embryogenesis occurs within organisms; therefore, gastrulation was originally described in species with easily observable embryos. For example, the African clawed frog (Xenopus laevis) is the most widely used organism to study gastrulation because the large embryos develop inside a translucent membrane.
Format: Articles
Subject: Processes, Experiments
Sex-determining Region Y in Mammals
The Sex-determining Region Y (Sry in mammals but SRY in humans) is a gene found on Y chromosomes that leads to the development of male phenotypes, such as testes. The Sry gene, located on the short branch of the Y chromosome, initiates male embryonic development in the XY sex determination system. The Sry gene follows the central dogma of molecular biology; the DNA encoding the gene is transcribed into messenger RNA, which then produces a single Sry protein.
Format: Articles
Subject: Processes
Endoderm
Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of cells transforms into a two-layered embryo made of an inner layer of endoderm and an outer layer of ectoderm. In more complex organisms, like vertebrates, these two primary germ layers interact to give rise to a third germ layer, called mesoderm.
Format: Articles
Subject: Processes
The Meselson-Stahl Experiment (1957–1958), by Matthew Meselson and Franklin Stahl
In an experiment later named for them, Matthew Stanley Meselson and Franklin William Stahl in the US demonstrated during the 1950s the semi-conservative replication of DNA, such that each daughter DNA molecule contains one new daughter subunit and one subunit conserved from the parental DNA molecule. The researchers conducted the experiment at California Institute of Technology (Caltech) in Pasadena, California, from October 1957 to January 1958.
Format: Articles
Subject: Processes, Experiments
The Notch Signaling Pathway in Embryogenesis
The Notch signaling pathway is a mechanism in animals by which adjacent cells communicate with each other, conveying spatial information and genetic instructions for the animal's development. All multicellular animals utilize Notch signaling, which contributes to the formation, growth, and development of embryos (embryogenesis). Notch signaling also contributes to the differentiation of embryonic cells into various types of cells into various types of cells, such as neurons.
Format: Articles
Subject: Processes
Morphogenesis
The term morphogenesis generally refers to the processes by which order is created in the developing organism. This order is achieved as differentiated cells carefully organize into tissues, organs, organ systems, and ultimately the organism as a whole. Questions centered on morphogenesis have aimed to uncover the mechanisms responsible for this organization, and developmental biology textbooks have identified morphogenesis as one of the main challenges in the field. The concept of morphogenesis is intertwined with those of differentiation, growth, and reproduction.
Format: Articles
Subject: Processes
Sex Determination in Humans
In humans, sex determination is the process that determines the biological sex of an offspring and, as a result, the sexual characteristics that they will develop. Humans typically develop as either male or female, primarily depending on the combination of sex chromosomes that they inherit from their parents. The human sex chromosomes, called X and Y, are structures in human cells made up of tightly bound deoxyribonucleic acid, or DNA, and proteins.
Format: Articles
Sperm Capacitation
Sperm capacitation refers to the physiological changes spermatozoa must undergo in order to have the ability to penetrate and fertilize an egg. This term was first coined in 1952 by Colin Russell Austin based on independent studies conducted by both Austin himself as well as Min Chueh Chang in 1951. Since the initial reports and emergence of the term, the details of the process have been more clearly elucidated due to technological advancements.
Format: Articles
Subject: Processes
Chemical Induction
Research in chemical induction seeks to identify the compound or compounds responsible for differentiation in a developing embryo. Soren Lovtrup compared the search for these compounds to the search for the philosopher's stone. It was based on the assumption that the differentiating agents have to be chemical substances either within cells or in the extracellular matrix.
Format: Articles
Subject: Processes
Tissue Engineering
Tissue engineering is a field of regenerative medicine that integrates the knowledge of scientists, physicians, and engineers into the construction or reconstruction of human tissue. Practitioners of tissue engineering seek to repair, replace, maintain, and enhance the abilities of a specific tissue or organ by means of living cells. More often than not stem cells are the form of living cells used in this technology. Tissue engineering is one of the disciplines involved in translating knowledge of developmental biology into the clinical setting.
Format: Articles
Subject: Processes
The Process of Implantation of Embryos in Primates
Implantation is a process in which a developing embryo, moving as a blastocyst through a uterus, makes contact with the uterine wall and remains attached to it until birth. The lining of the uterus (endometrium) prepares for the developing blastocyst to attach to it via many internal changes. Without these changes implantation will not occur, and the embryo sloughs off during menstruation. Such implantation is unique to mammals, but not all mammals exhibit it.
Format: Articles
Subject: Processes
Luc Antoine Montagnier (1932-2022)
Luc Montagnier studied viruses, the immune system, and cancer in France during the second half of the twentieth century. In his early career, Montagnier studied how cancer-causing viruses replicate and infect host cells. He received the Nobel Prize in Physiology or Medicine in 2008 for his team’s discovery that a retrovirus, human immunodeficiency virus, or HIV, was the cause of acquired immunodeficiency syndrome, or AIDS. AIDS is a chronic condition that results from HIV infection and damages the immune system.
Format: Articles
Subject: People, Processes, Experiments
Spemann-Mangold Organizer
The Spemann-Mangold organizer, also known as the Spemann organizer, is a cluster of cells in the developing embryo of an amphibian that induces development of the central nervous system. Hilde Mangold was a PhD candidate who conducted the organizer experiment in 1921 under the direction of her graduate advisor, Hans Spemann, at the University of Freiburg in Freiburg, German. The discovery of the Spemann-Mangold organizer introduced the concept of induction in embryonic development.
Format: Articles
Subject: Processes
Hematopoietic Stem Cells
The discovery of hematopoietic stem cells (HSCs) provided a pioneering step in stem cell research. HSCs are a type of multipotent adult stem cell, characterized by their ability to self-renew and differentiate into erythrocyte (red blood cell) and leukocyte (white blood cell) cell lineages. In terms of function, these cells are responsible for the continual renewal of the erythrocytes, leukocytes, and platelets in the body through a process called hematopoiesis. They also play an important role in the formation of vital organs such as the liver and spleen during fetal development.
Format: Articles
Subject: Processes