Search

Displaying 1 - 25 of 104 items.

Pages

Hartsoeker's Homunculus Sketch from Essai de Dioptrique

This embryology image is a pencil sketch by Nicolaas Hartsoeker, published as part of his 1694 French-language paper entitled Essai de Dioptrique, a semi-speculative work describing the sorts of new scientific observations that could be done using magnifying lenses. Dioptrique was published in Paris by the publishing house of Jean Anisson. The image depicts a curled up infant-like human, now referred to as a homunculus, inside the head of a sperm cell.

Format: Articles

Subject: Theories, Processes

The Process of Gastrulation in Frog Embryos

Illustration of the movement of the three hemispheres of cells, the animal cap (dark green) the marginal zone (lime green) and the ventral cap (yellow) during frog gastrulation. The external view column (images a.1-a.6) shows gastrulation as it occurs on the outside of the embryo. The cross-section view column (images b.1-b.6) shows the internal view of gastrulation. The cross-sections are through the middle of the embryo.

Format: Graphics

Subject: Processes, Organisms, Theories

Neurospora crassa Life Cycle

This diagram shows the life cycle of Neurospora crassa, a mold that grows on bread. N. crassa can reproduce through an asexual cycle or a sexual cycle. The asexual cycle (colored as a purple circle), begins in this figure with (1a) vegetative mycelium, which are strands of mature fungus. Some of the strands form bulbs (2a) in a process called conidiation. From those bulbs develop the conidia, which are spores. Next, (3a) a single conidium separates from its strand and elongates until it forms mycelium.

Format: Graphics

Subject: Organisms, Processes, Theories

Fruit Fly Life Cycle

Fruit flies of the species Drosophila melanogaster develop from eggs to adults in eight to ten days at 25 degrees Celsius. They develop through four primary stages: egg, larva, pupa, and adult. When in the wild, female flies lay their fertilized eggs in rotting fruit or other decomposing material that can serve as food for the larvae. In the lab, fruit flies lay their fertilized eggs in a mixture of agar, molasses, cornmeal, and yeast. After roughly a day, each egg hatches into a larva.

Format: Graphics

Subject: Theories, Processes, Organisms

Frog Embryo in the Blastula Stage

Illustration of the animal-vegetal gradient in Xenopus laevis ( African clawed frog) eggs after fertilization. During fertilization, the sperm s point of entry determines the future dorsal side (shaded) and ventral side (unshaded) of the embryo. The prospective ventral side of the embryo forms on the side where the sperm enters while the prospective dorsal side forms opposite the sperm s point of entry.

Format: Graphics

Subject: Processes, Organisms, Theories

A Fate Map of the Chick Embryo

A 3-D fate map of the chicken (Gallus gallus) embryo with the prospective point of ingression and yolk. The area where the primitive streak will form during gastrulation is shown. The anterior- posterior axis is shown by labeling the anterior and posterio ends (A) and (P). Different colors indicate prospective fates of different regions of the epiblast after gastrulation.

Format: Graphics

Subject: Processes, Organisms, Theories

The Development of the Neural Crest and the Migration of Neural Crest Cells (NCCs) in the Embryos of Various Vertebrates

This diagram shows how NCCs migrate differently in rats, birds and amphibians. The arrows represent both chronology of NCCs migration and the differential paths that NCCs follow in different classes of animals. The solid black portion of each illustration represents the neural crest, and the large black dots in (c) and in (f) represent the neural crest cells. The speckled sections that at first form a basin in (a) and then close to form a tube in (f) represent the neural ectoderm. The solid white portions represent the epidermal ectoderm.

Format: Graphics

Subject: Theories, Processes

George W. Beadle's One Gene-One Enzyme Hypothesis

The one gene-one enzyme hypothesis, proposed by George Wells Beadle in the US in 1941, is the theory that each gene directly produces a single enzyme, which consequently affects an individual step in a metabolic pathway. In 1941, Beadle demonstrated that one gene in a fruit fly controlled a single, specific chemical reaction in the fruit fly, which one enzyme controlled.

Format: Articles

Subject: Theories

Revive & Restore’s Woolly Mammoth Revival Project

In 2015, Revive & Restore launched the Woolly Mammoth Revival Project with a goal of engineering a creature with genes from the woolly mammoth and introducing it back into the tundra to combat climate change. Revive & Restore is a nonprofit in California that uses genome editing technologies to enhance conservation efforts in sometimes controversial ways.

Format: Articles

Subject: Theories, Technologies, Organizations, Ethics

Study of Fossilized Massospondylus Dinosaur Embryos from South Africa (1978-2012)

In 1978, James Kitching discovered two dinosaur embryos in a road-cut talus at Roodraai (Red Bend) in Golden Gate Highlands National Park, South Africa. Kitching assigned the fossilized embryos to the species of long necked herbivores Massospondylus carinatus (longer vertebra) from the Early Jurassic period, between 200 and 183 million years ago. The embryos were partially visible but surrounded by eggshell and rock, called matrix. Kitching said that the eggs were too delicate to remove from the matrix without damage.

Format: Articles

Subject: Theories, Organisms

The Blastoderm in Chicks During Early Gastrulation

This image shows a chicken (Gallus gallus) embryo undergoing gastrulation in stage four (18-19 hrs after laying) according to the Hamburger-Hamilton staging series. At this point in time the chicken embryo is a blastoderm (shown in blue). The first magnification of the embryo shows that the blastoderm cell layers have thickened to form the primitive streak and Hensen's node. The primitive streak extends from the posterior (P) region to the anterior (A) region. The second rectangular magnification shows the blastoderm cross-sectioned through the primitive streak.

Format: Graphics

Subject: Processes, Organisms, Theories

Interspecies SCNT-derived Humanesque Blastocysts

Since the 1950s, scientists have developed interspecies blastocysts in laboratory settings, but not until the 1990s did proposals emerge to engineer interspecies blastocysts that contained human genetic or cellular material. Even if these embryos were not permitted to mature to fetal stages, their ethical and political status became debated within nations attempting to use them for research.

Format: Articles

Subject: Theories

"The Spandrels of San Marco and the Panglossian Paradigm: A Critique of the Adaptationist Programme" (1979), by Stephen J. Gould and Richard C. Lewontin

The Spandrels of San Marco and the Panglossian Paradigm:
A Critique of the Adaptationist Programme, hereafter called
The Spandrels, is an article written by Stephen J. Gould and
Richard C. Lewontin published in the Proceedings of the Royal
Society of London in 1979. The paper emphasizes issues with
what the two authors call adaptationism or the adaptationist
programme as a framework to explain how species and traits evolved. The paper
is one in a series of works in which Gould emphasized the

Format: Articles

Subject: Publications, Theories

Germ Layers

A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through the process of gastrulation. During gastrulation, a hollow cluster of cells called a blastula reorganizes into two primary germ layers: an inner layer, called endoderm, and an outer layer, called ectoderm.

Format: Articles

Subject: Theories, Processes

Carnegie Stages

Historically the exact age of human embryo specimens has long perplexed embryologists. With the menstrual history of the mother often unknown or not exact, and the premenstrual and postmenstrual phases varying considerably among women, age sometimes came down to a best guess based on the weight and size of the embryo. Wilhelm His was one of the first to write comparative descriptions of human embryos in the late 1800s. Soon afterward, Franklin P. Mall, the first director of the Carnegie Institution of Washington's (CIW) Department of Embryology, expanded upon His' work.

Format: Articles

Subject: Theories

The Y-Chromosome in Animals

The Y-chromosome is one of a pair of chromosomes that determine the genetic sex of individuals in mammals, some insects, and some plants. In the nineteenth and twentieth centuries, the development of new microscopic and molecular techniques, including DNA sequencing, enabled scientists to confirm the hypothesis that chromosomes determine the sex of developing organisms. In an adult organism, the genes on the Y-chromosome help produce the male gamete, the sperm cell. Beginning in the 1980s, many studies of human populations used the Y-chromosome gene sequences to trace paternal lineages.

Format: Articles

Subject: Reproduction, Theories

Some of the Cells that Arise from Animal Gastrulas with Three Germ Layers

From a developing embryos three primary germ layers, ectoderm (green), mesoderm (pink) and endoderm (yellow), a variety of differentiated cell types and organ systems arise, far more than are shown here. The three primary germ layers are shown during the gastrula stage because they become distinct at the gastrula stage. The germ cells (blue) are pre- cursors to sperm and egg cells, and they are set aside early in development, and are thought to arise from the ectoderm.

Format: Graphics

Subject: Theories, Processes

Dysmenorrhea as a Menstrual Disorder

Dysmenorrhea refers to painful menstrual bleeding and often includes symptoms such as cramps in the lower abdominal region, pain radiating down to the thighs, nausea and vomiting, diarrhea, fatigue, and headaches. There are two types of dysmenorrhea, called primary and secondary dysmenorrhea, which develop in different ways. In cases of primary dysmenorrhea, people experience painful cramps before and during most of their menstrual cycles, which does not happen as a result of a different underlying condition and is mostly due to hormone imbalances.

Format: Articles

Subject: Disorders, Theories

The Role of the Notch Signaling Pathway in Myogenesis

Among other functions, the Notch signaling pathway forestalls the process of myogenesis in animals. The Notch signaling pathway is a pathway in animals by which two adjacent cells within an organism use a protein named Notch to mechanically interact with each other. Myogenesis is the formation of muscle that occurs throughout an animal's development, from embryo to the end of life. The cellular precursors of skeletal muscle originate in somites that form along the dorsal side of the organism.

Format: Articles

Subject: Theories, Processes

DNA and X and Y Chromosomes

Y-chromosomes exist in the body cells of many kinds of male animals. Found in the nucleus of most living animal cells, the X and Y-chromosomes are condensed structures made of DNA wrapped around proteins called histones. The individual histones bunch into groups that the coiled DNA wraps around called a nucleosome, which are roughly 10 nano-meters (nm) across. The histones bunch together to form a helical fiber (30 nm) that spins into a supercoil (200 nm). During much of a cell's life, DNA exists in the 200 nm supercoil phase.

Format: Graphics

Subject: Theories, Processes

Neural Crest

Early in the process of development, vertebrate embryos develop a fold on the neural plate where the neural and epidermal ectoderms meet, called the neural crest. The neural crest produces neural crest cells (NCCs), which become multiple different cell types and contribute to tissues and organs as an embryo develops. A few of the organs and tissues include peripheral and enteric (gastrointestinal) neurons and glia, pigment cells, cartilage and bone of the cranium and face, and smooth muscle.

Format: Articles

Subject: Theories

Lynn Petra Alexander Sagan Margulis (1938-2011)

Lynn Petra Alexander Sagan Margulis was an American biologist, whose work in the mid-twentieth century focused on cells living together in a mutually advantageous relationship, studied cells and mitochondria in the US during the second half of the twentieth century. She developed a theory for the origin of eukaryotic cells, that proposed two kinds of structures found in eukaryotic cells mitochondria in animals, and plastids in plantsÑwere once free-living bacteria that lived harmoniously and in close proximity to larger cells, a scenario called symbiosis.

Format: Articles

Subject: People, Theories

Somatic Cell Nuclear Transfer in Mammals (1938-2013)

In the second half of the
twentieth century, scientists learned how to clone organisms in some
species of mammals. Scientists have applied somatic cell nuclear transfer to clone human and
mammalian embryos as a means to produce stem cells for laboratory
and medical use. Somatic cell nuclear transfer (SCNT) is a technology applied in cloning, stem cell
research and regenerative medicine. Somatic cells are cells that
have gone through the differentiation process and are not germ
cells. Somatic cells donate their nuclei, which scientists

Format: Articles

Subject: Theories, Technologies, Processes

Julia Barlow Platt's Embryological Observations on Salamanders' Cartilage (1893)

In 1893, Julia Barlow Platt published her research on the origins of cartilage in the developing head of the common mudpuppy (Necturus maculosus) embryo. The mudpuppy is an aquatic salamander commonly used by embryologists because its large embryonic cells and nuclei are easy to see. Platt followed the paths of cells in developing mudpuppy embryos to see how embryonic cells migrated during the formation of the head. With her research, Platt challenged then current theories about germ layers, the types of cells in an early embryo that develop into adult cells.

Format: Articles

Subject: Experiments, Theories, Processes

Mechanism of Notch Signaling

Mechanism of Notch Signaling: The image depicts a type of cell signaling, in which two animal cells interact and transmit a molecular signal from one to the other. The process results in the production of proteins, which influence the cells as they differentiate, move, and contribute to embryological development. In the membrane of the signaling cell, there is a ligand (represented by a green oval). The ligand functions to activate a change in a receptor molecule. In the receiving cell, there are receptors; in this case, Notch proteins (represented by orange forks).

Format: Graphics

Subject: Theories, Processes

Pages