Search
Filter by Topic
- (-) Remove Experiments filter Experiments
- Publications (17) Apply Publications filter
- Reproduction (12) Apply Reproduction filter
- People (5) Apply People filter
- Disorders (4) Apply Disorders filter
- Processes (4) Apply Processes filter
- Technologies (4) Apply Technologies filter
- Organisms (3) Apply Organisms filter
- Ethics (2) Apply Ethics filter
- Theories (1) Apply Theories filter
Filter by Format
- (-) Remove Articles filter Articles
"Experiments in Plant Hybridization" (1866), by Johann Gregor Mendel
During the mid-nineteenth century, Johann Gregor Mendel experimented with pea plants to develop a theory of inheritance. In 1843, while a monk in the Augustian St Thomas's Abbey in Brünn, Austria, now Brno, Czech Repubic, Mendel examined the physical appearance of the abbey's pea plants (Pisum sativum) and noted inconsistencies between what he saw and what the blending theory of inheritance, a primary model of inheritance at the time, predicted.
Format: Articles
Subject: Experiments
"Development, Plasticity and Evolution of Butterfly Eyespot Patterns" (1996), by Paul M. Brakefield et al.
Paul M. Brakefield and his research team in Leiden, the Netherlands, examined the development, plasticity, and evolution of butterfly eyespot patterns, and published their findings in Nature in 1996. Eyespots are eye-shaped color patterns that appear on the wings of some butterflies and birds as well as on the skin of some fish and reptiles. In butterflies, such as the peacock butterfly Aglais, the eyespots resemble the eyes of birds and help butterflies deter potential predators.
Format: Articles
Subject: Experiments
"Transfer of Fetal Cells with Multilineage Potential to Maternal Tissue" (2004), by Kiarash Khosrotehrani et al.
In 2004, a team of researchers at Tufts-New England
Medical Center in Boston, Massachusetts, investigated the fetal
cells that remained in the maternal blood stream after pregnancy.
The results were published in Transfer of Fetal Cells with
Multilineage Potential to Maternal Tissue. The team working on that
research included Kiarash Khosrotehrani, Kirby L. Johnson, Dong
Hyun Cha, Robert N. Salomon, and Diana W. Bianchi. The researchers
reported that the fetal cells passed to a pregnant woman during
Format: Articles
Subject: Experiments, Reproduction
A plant genetically modified that accumulates Pb is especially promising for phytoremediation (2003), by Carmina Gisbert et al.
In 2003, Carmina Gisbert and her research team produced a tobacco plant that could remove lead from soil. To do so, they inserted a gene from wheat plants that produces phytochelatin synthase into a shrub tobacco plant (Nicotiana glauca) to increase N. glauca's absorption and tolerance of toxic metals, particularly lead and cadmium. Gisbert and her team aimed to genetically modify a plant so that it could be used for phytoremediation- using plants to remove toxic substances from the soil.
Format: Articles
Subject: Experiments, Technologies
Paul Kammerer's Experiments on Sea-squirts in the Early Twentieth Century
In the early twentieth century, Paul Kammerer, a zoologist working at the Vivarium in Vienna, Austria, experimented on sea-squirts (Ciona intestinalis). Kammerer claimed that results from his experiments demonstrated that organisms could transmit characteristics that they had acquired in their lifetimes to their offspring. Kammerer conducted breeding experiments on sea-squirts and other organisms at a time when Charles Darwin's 1859 theory of evolution lacked evidence to explain how offspring inherited traits from their parents.
Format: Articles
Subject: Experiments, Organisms
Digit Regeneration Is Regulated by Msx1 and BMP4 in Fetal Mice (2003), by Manjong Han et al.
In the early 2000s, Manjong Han, Xiaodang Yang, Jennifer Farrington, and Ken Muneoka investigated how genes and proteins in fetal mice (Mus musculus) influenced those fetal mice to regenerate severed toes at Tulane University in New Orleans, Louisiana. The group used hind limbs from mice to show how the gene Msx1 (Homeobox 7) functions in regenerating amputated digits.
Format: Articles
Subject: Experiments
Alec Jeffreys’s Experiments to Identify Individuals by Their Beta-globin Genes (1977-1979)
In a series of experiments in the late 1970s, Alec J. Jeffreys in the UK and Richard A. Flavell in the Netherlands developed a technique to detect variations in the DNA of different individuals. They compared fragments of DNA from individuals’ beta-globin genes, which produce a protein in hemoglobin. Previously, to identify biological material, scientists focused on proteins rather than on genes. But evidence about proteins enabled scientists only to exclude, but not to identify, individuals as the sources of the biological samples.
Format: Articles
Subject: Experiments