Search
Filter by Topic
- People (72) Apply People filter
- Publications (57) Apply Publications filter
- Experiments (51) Apply Experiments filter
- Theories (42) Apply Theories filter
- Processes (40) Apply Processes filter
- Reproduction (36) Apply Reproduction filter
- Disorders (27) Apply Disorders filter
- Technologies (22) Apply Technologies filter
- Ethics (18) Apply Ethics filter
- Legal (17) Apply Legal filter
- Organizations (15) Apply Organizations filter
- Organisms (10) Apply Organisms filter
- Outreach (7) Apply Outreach filter
- DNA (1) Apply DNA filter
Hox Genes and the Evolution of Vertebrate Axial Morphology Experiment (1995)
In 1995, researchers Ann Burke, Craig Nelson, Bruce Morgan, and Cliff Tabin in the US studied the genes that regulate the construction of vertebra in developing chick and mouse embryos, they showed similar patterns of gene regulation across both species, and they concluded that those patterns were inherited from an ancestor common to all vertebrate animals. The group analyzed the head-to-tail (anterior-posterior) axial development of vertebrates, as the anterior-posterior axis showed variation between species over the course of evolutionary time.
Format: Articles
Subject: Experiments
Digit Regeneration Is Regulated by Msx1 and BMP4 in Fetal Mice (2003), by Manjong Han et al.
In the early 2000s, Manjong Han, Xiaodang Yang, Jennifer Farrington, and Ken Muneoka investigated how genes and proteins in fetal mice (Mus musculus) influenced those fetal mice to regenerate severed toes at Tulane University in New Orleans, Louisiana. The group used hind limbs from mice to show how the gene Msx1 (Homeobox 7) functions in regenerating amputated digits.
Format: Articles
Subject: Experiments
George W. Beadle's One Gene-One Enzyme Hypothesis
The one gene-one enzyme hypothesis, proposed by George Wells Beadle in the US in 1941, is the theory that each gene directly produces a single enzyme, which consequently affects an individual step in a metabolic pathway. In 1941, Beadle demonstrated that one gene in a fruit fly controlled a single, specific chemical reaction in the fruit fly, which one enzyme controlled.
Format: Articles
Subject: Theories
Dissertation: Editing Engagement: Visions of Science, Democracy, and Responsibility in Gene Editing Discourse
Format: Essays and Theses
Subject: Ethics, Legal, Technologies
Alec Jeffreys’s Experiments to Identify Individuals by Their Beta-globin Genes (1977-1979)
In a series of experiments in the late 1970s, Alec J. Jeffreys in the UK and Richard A. Flavell in the Netherlands developed a technique to detect variations in the DNA of different individuals. They compared fragments of DNA from individuals’ beta-globin genes, which produce a protein in hemoglobin. Previously, to identify biological material, scientists focused on proteins rather than on genes. But evidence about proteins enabled scientists only to exclude, but not to identify, individuals as the sources of the biological samples.
Format: Articles
Subject: Experiments
Walter Jakob Gehring (1939-2014)
Walter Jakob Gehring discovered the homeobox, a DNA segment found in a specific cluster of genes that determine the body plan of animals, plants, and fungi. Gehring identified the homeobox in 1983, with the help of colleagues while isolating the Antennapedia (Antp) gene in fruit flies (Drosophila) at the University of Basel in Basel, Switzerland. Hox genes, a family of genes that have the homeobox, determine the head-to-tail (anterior-posterior) body axis of both vertebrates and invertebrates.
Format: Articles
Subject: People
Homeobox Genes and the Homeobox
Homeobox genes are a cluster of regulatory genes that are spatially and temporally expressed during early embryological development. They are interesting from both a developmental and evolutionary perspective since their sequences are highly conserved and shared across an enormously wide array of living taxa.
Format: Articles
Subject: Processes
Eric Wieschaus (1947- )
Eric Wieschaus studied how genes cause fruit fly larvae to develop in the US and Europe during the twentieth and twenty-first centuries. Using the fruit fly Drosophila melanogaster, Wieschaus and colleague Christiane Nusslein-Volhard described genes and gene products that help form the fruit fly body plan and establish the larval segments during embryogenesis. This work earned Wieschaus and Nüsslein-Volhard the 1995 Nobel Prize in Physiology or Medicine.
Format: Articles
Subject: People
"Gene Regulation for Higher Cells: A Theory" (1969), by Roy J. Britten and Eric H. Davidson
In 1969, Roy J. Britten and Eric H. Davidson published Gene Regulation for Higher Cells: A Theory, in Science. A Theory proposes a minimal model of gene regulation, in which various types of genes interact to control the differentiation of cells through differential gene expression. Britten worked at the Carnegie Institute of Washington in Washington, D.C., while Davidson worked at the California Institute of Technology in Pasadena, California. Their paper was an early theoretical and mechanistic description of gene regulation in higher organisms.
Format: Articles
Subject: Publications
"Genetic Control of Biochemical Reactions in Neurospora" (1941), by George W. Beadle and Edward L. Tatum
George Wells Beadle and Edward Lawrie Tatum's 1941 article Genetic Control of Biochemical Reactions in Neurospora detailed their experiments on how genes regulated chemical reactions, and how the chemical reactions in turn affected development in the organism. Beadle and Tatum experimented on Neurospora, a type of bread mold, and they concluded that mutations to genes affected the enzymes of organisms, a result that biologists later generalized to proteins, not just enzymes.
Format: Articles
Subject: Experiments
Cornelia Isabella Bargmann (1961- )
Cornelia Isabella Bargmann studied the relationship between genes, neural circuits, and behavior in the roundworm Caenorhabditis elegans (C. elegans) during the twentieth and twenty-first centuries in the US. Bargmann’s research focused on how the sense of smell (olfaction) in the nematode word Caenorhabditis elegans. She provided a model to study how neural circuits develop and function in the human brain, as the genetic regulatory pathways are similar.
Format: Articles
Subject: People
The Effects of Diethylstilbestrol on Embryonic Development
Estrogen plays a key role in the regulation of gene transcription. This is accomplished by its ability to act as a ligand and to bind to specific estrogen receptor (ER) molecules, such as ERα and ERβ, which act as nuclear transcription factors. There are three major nuclear estrogen receptor protein domains: the estrogen binding domain, the protein interaction domain, and the DNA binding domain.
Format: Articles
Subject: Disorders
"A Genomic Regulatory Network for Development" (2002), by Eric H. Davidson, et al.
In 2002 Eric Davidson and his research team published 'A Genomic Regulatory Network for Development' in Science. The authors present the first experimental verification and systemic description of a gene regulatory network. This publication represents the culmination of greater than thirty years of work on gene regulation that began in 1969 with 'A Gene Regulatory Network for Development: A Theory' by Roy Britten and Davidson. The modeling of a large number of interactions in a gene network had not been achieved before.
Format: Articles
Subject: Publications
The Y-Chromosome in Animals
The Y-chromosome is one of a pair of chromosomes that determine the genetic sex of individuals in mammals, some insects, and some plants. In the nineteenth and twentieth centuries, the development of new microscopic and molecular techniques, including DNA sequencing, enabled scientists to confirm the hypothesis that chromosomes determine the sex of developing organisms. In an adult organism, the genes on the Y-chromosome help produce the male gamete, the sperm cell. Beginning in the 1980s, many studies of human populations used the Y-chromosome gene sequences to trace paternal lineages.
Format: Articles
Subject: Reproduction, Theories
DNA and X and Y Chromosomes
Y-chromosomes exist in the body cells of many kinds of male animals. Found in the nucleus of most living animal cells, the X and Y-chromosomes are condensed structures made of DNA wrapped around proteins called histones. The individual histones bunch into groups that the coiled DNA wraps around called a nucleosome, which are roughly 10 nano-meters (nm) across. The histones bunch together to form a helical fiber (30 nm) that spins into a supercoil (200 nm). During much of a cell's life, DNA exists in the 200 nm supercoil phase.
Format: Graphics
George Wells Beadle (1903-1989)
George Wells Beadle studied corn, fruit flies, and funguses in the US during the twentieth century. These studies helped Beadle earn the 1958 Nobel Prize in Physiology or Medicine. Beadle shared the prize with Edward Tatum for their discovery that genes help regulate chemical processes in and between cells. This finding, initially termed the one gene-one enzyme hypothesis, helped scientists develop new techniques to study genes and DNA as molecules, not just as units of heredity between generations of organisms.
Format: Articles
Subject: People
Bicoid
Bicoid is the protein product of a maternal-effect gene unique to flies of the genus Drosophila . In 1988 Christiane Nüsslein-Volhard identified bicoid as the first known morphogen . A morphogen is a molecule that determines the fate and phenotype of a group of cells through a concentration gradient across that developing region. The bicoid gradient, which extends across the anterior-posterior axis of Drosophila embryos, organizes the head and thorax.
Format: Articles
Subject: Processes
Roy John Britten (1919-2012)
Roy John Britten studied DNA sequences in the US in the second
half of the twentieth century, and he helped discover repetitive
elements in DNA sequences. Additionally, Britten helped propose
models and concepts of gene regulatory networks. Britten studied the
organization of repetitive elements and, analyzing data from the
Human Genome Project, he found that the repetitive elements in DNA
segments do not code for proteins, enzymes, or cellular parts.
Britten hypothesized that repetitive elements helped cause cells to
Format: Articles
Subject: People
Lysogenic Bacteria as an Experimental Model at the Pasteur Institute (1915-1965)
Lysogenic bacteria, or virus-infected bacteria, were the primary experimental models used by scientists working in the laboratories of the Pasteur Institute in Paris, France, during the 1950s and 1960s. Historians of science have noted that the use of lysogenic bacteria as a model in microbiological research influenced the scientific achievements of the Pasteur Institute's scientists.
Format: Articles
Subject: Organisms, Experiments
The Effects of Gene Regulation on Aging in Caenorhabditis elegans (2003)
In 2003, molecular biology and genetics researchers Coleen T. Murphy, Steven A. McCarroll, Cornelia I. Bargmann, Andrew Fraser, Ravi S. Kamath, Julie Ahringer, Hao Li, and Cynthia Kenyon conducted an experiment that investigated the cellular aging in, Caenorhabditis elegans (C. elegans) nematodes. The researchers investigated the interactions between the transcription factor DAF-16 and the genes that regulate the production of an insulin-like growth factor 1 (IGF-1-like) protein related to the development, reproduction, and aging in C. elegans.
Format: Articles
Subject: Experiments
Interspecies SCNT-derived Humanesque Blastocysts
Since the 1950s, scientists have developed interspecies blastocysts in laboratory settings, but not until the 1990s did proposals emerge to engineer interspecies blastocysts that contained human genetic or cellular material. Even if these embryos were not permitted to mature to fetal stages, their ethical and political status became debated within nations attempting to use them for research.
Format: Articles
Subject: Theories
Revive & Restore’s Woolly Mammoth Revival Project
In 2015, Revive & Restore launched the Woolly Mammoth Revival Project with a goal of engineering a creature with genes from the woolly mammoth and introducing it back into the tundra to combat climate change. Revive & Restore is a nonprofit in California that uses genome editing technologies to enhance conservation efforts in sometimes controversial ways.
Format: Articles
Subject: Theories, Technologies, Organizations, Ethics
Christiane Nusslein-Volhard (1942- )
Christiane Nusslein-Volhard studied how genes control embryonic development in flies and in fish in Europe during the twentieth and twenty-first centuries. In the 1970s, Nusslein-Volhard focused her career on studying the genetic control of development in the fruit fly Drosophila melanogaster. In 1988, Nusslein-Volhard identified the first described morphogen, a protein coded by the gene bicoid in flies. In 1995, along with Eric F. Wieschaus and Edward B.
Format: Articles
Subject: People
Boris Ephrussi (1901-1979)
Boris Ephrussi studied fruit flies, yeast, and mouse genetics and development while working in France and the US during the twentieth century. In yeast, Ephrussi studied how mutations in the cytoplasm persisted across generations. In mice he studied the genetics of hybrids and the development of cancer. Working with George Wells Beadle on the causes of different eye colors in fruit flies, Ephrussi's research helped establish the one-gene-one-enzyme hypothesis. Ephrussi helped create new embryological techniques and contributed the theories of genetics and development.
Format: Articles
Subject: People
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Gene
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene was identified in 1989 by geneticist Lap-Chee Tsui and his research team as the gene associated with cystic fibrosis (CF). Tsui's research pinpointed the gene, some mutations to which cause CF, and it revealed the underlying disease mechanism. The CFTR gene encodes a protein in the cell membrane in epithelial tissues and affects multiple organ systems in the human body. Mutations in the CFTR gene cause dysfunctional regulation of cell electrolytes and water content.
Format: Articles
Subject: Disorders, Reproduction