Search

Displaying 51 - 75 of 84 items.

Estrogen

The figure depicts three different molecular structures of estrogen found in mammals’ that differ by the arrangement of bonds and side groups. The molecular structures of the three estrogen molecules differ by the arrangement of chemical bonds and side groups attached to the core steroid structure, cholesterol, which contains three cyclohexane rings and one cyclopentane ring.

Format: Graphics

Subject: Theories, Processes, Reproduction

Mitochondria

Mitochondria are organelles found in the cytoplasm of eukaryotic cells. They are composed of an outer membrane and an inner membrane. The outer membrane faces the cellular cytoplasm, while the inner membrane folds back on itself multiple times, forming inner folds, called cristae. The space between the two membrane layers is called the intermembrane space, and the space within the inner membrane is called the matrix.

Format: Graphics

Subject: Theories, Processes

Jelly Fish and Green Fluorescent Protein

The crystal jellyfish, Aequorea victoria, produces and emits light, called bioluminescence. Its DNA codes for sequence of 238 amino acids that forms a protein called Green Fluorescent Protein (GFP). FP is folded so that a part of the protein, called the chromophore, is located in the center of the protein. The chemical structure of the chromophore emits a green fluorescence when exposed to light in the range of blue to ultraviolet.

Format: Graphics

Subject: Theories, Processes, Organisms, Technologies

DNA and X and Y Chromosomes

Y-chromosomes exist in the body cells of many kinds of male animals. Found in the nucleus of most living animal cells, the X and Y-chromosomes are condensed structures made of DNA wrapped around proteins called histones. The individual histones bunch into groups that the coiled DNA wraps around called a nucleosome, which are roughly 10 nano-meters (nm) across. The histones bunch together to form a helical fiber (30 nm) that spins into a supercoil (200 nm). During much of a cell's life, DNA exists in the 200 nm supercoil phase.

Format: Graphics

Subject: Theories, Processes

Chloroplasts

Chloroplasts are the organelles in plant and algal cells that conduct photosynthesis. A single chloroplast has an outer membrane and an inner membrane, with an intermembrane space in between. Within the inner membrane, interconnected stacks of thylakoids, called granum, float in a protein rich fluid called the stroma. These thylakoid stacks contain chlorophyll, a pigment which converts sunlight into usable energy for plants and free oxygen from water. The stacks are sites of light reactions within a plant cell.

Format: Graphics

Subject: Theories, Processes

Neurospora crassa Life Cycle

This diagram shows the life cycle of Neurospora crassa, a mold that grows on bread. N. crassa can reproduce through an asexual cycle or a sexual cycle. The asexual cycle (colored as a purple circle), begins in this figure with (1a) vegetative mycelium, which are strands of mature fungus. Some of the strands form bulbs (2a) in a process called conidiation. From those bulbs develop the conidia, which are spores. Next, (3a) a single conidium separates from its strand and elongates until it forms mycelium.

Format: Graphics

Subject: Organisms, Processes, Theories

Fruit Fly Life Cycle

Fruit flies of the species Drosophila melanogaster develop from eggs to adults in eight to ten days at 25 degrees Celsius. They develop through four primary stages: egg, larva, pupa, and adult. When in the wild, female flies lay their fertilized eggs in rotting fruit or other decomposing material that can serve as food for the larvae. In the lab, fruit flies lay their fertilized eggs in a mixture of agar, molasses, cornmeal, and yeast. After roughly a day, each egg hatches into a larva.

Format: Graphics

Subject: Theories, Processes, Organisms

The Process of Gastrulation in Frog Embryos

Illustration of the movement of the three hemispheres of cells, the animal cap (dark green) the marginal zone (lime green) and the ventral cap (yellow) during frog gastrulation. The external view column (images a.1-a.6) shows gastrulation as it occurs on the outside of the embryo. The cross-section view column (images b.1-b.6) shows the internal view of gastrulation. The cross-sections are through the middle of the embryo.

Format: Graphics

Subject: Processes, Organisms, Theories

Frog Embryo in the Blastula Stage

Illustration of the animal-vegetal gradient in Xenopus laevis ( African clawed frog) eggs after fertilization. During fertilization, the sperm s point of entry determines the future dorsal side (shaded) and ventral side (unshaded) of the embryo. The prospective ventral side of the embryo forms on the side where the sperm enters while the prospective dorsal side forms opposite the sperm s point of entry.

Format: Graphics

Subject: Processes, Organisms, Theories

Mechanism of Notch Signaling

Mechanism of Notch Signaling: The image depicts a type of cell signaling, in which two animal cells interact and transmit a molecular signal from one to the other. The process results in the production of proteins, which influence the cells as they differentiate, move, and contribute to embryological development. In the membrane of the signaling cell, there is a ligand (represented by a green oval). The ligand functions to activate a change in a receptor molecule. In the receiving cell, there are receptors; in this case, Notch proteins (represented by orange forks).

Format: Graphics

Subject: Theories, Processes

The Development of the Neural Crest and the Migration of Neural Crest Cells (NCCs) in the Embryos of Various Vertebrates

This diagram shows how NCCs migrate differently in rats, birds and amphibians. The arrows represent both chronology of NCCs migration and the differential paths that NCCs follow in different classes of animals. The solid black portion of each illustration represents the neural crest, and the large black dots in (c) and in (f) represent the neural crest cells. The speckled sections that at first form a basin in (a) and then close to form a tube in (f) represent the neural ectoderm. The solid white portions represent the epidermal ectoderm.

Format: Graphics

Subject: Theories, Processes

Some of the Cells that Arise from Animal Gastrulas with Three Germ Layers

From a developing embryos three primary germ layers, ectoderm (green), mesoderm (pink) and endoderm (yellow), a variety of differentiated cell types and organ systems arise, far more than are shown here. The three primary germ layers are shown during the gastrula stage because they become distinct at the gastrula stage. The germ cells (blue) are pre- cursors to sperm and egg cells, and they are set aside early in development, and are thought to arise from the ectoderm.

Format: Graphics

Subject: Theories, Processes

Mechanistic Realization of the Turtle Shell

Turtle morphology is unlike that of any other vertebrate. The uniqueness of the turtle's bodyplan is attributed to the manner in which the turtle's ribs are ensnared within its hard upper shell. The exact embryological and genetic mechanisms underpinning this peculiar anatomical structure are still a matter of debate, but biologists agree that the evolution of the turtle shell lies in the embryonic development of the turtle.

Format: Articles

Subject: Processes

The Carapacial Ridge of Turtles

Two main elements characterize the skeletal morphology of turtles: the carapace and the plastron. For a turtle, the carapacial ridge begins in the embryo as a bulge posterior to the limbs but on both sides of the body. Such outgrowths are the first indication of shell development in turtle embryos. While the exact mechanisms underpinning the formation of the carapacial ridge are still not entirely known, some biologists argue that understanding these embryonic mechanisms is pivotal to explaining both the development of turtles and their evolutionary history.

Format: Articles

Subject: Processes

Stem Cells

According to the US National Institutes of Health (NIH), the standard American source on stem cell research, three characteristics of stem cells differentiate them from other cell types: (1) they are unspecialized cells that (2) divide for long periods, renewing themselves and (3) can give rise to specialized cells, such as muscle and skin cells, under particular physiological and experimental conditions. When allowed to grow in particular environments, stem cells divide many times. This ability to proliferate can yield millions of stem cells over several months.

Format: Articles

Subject: Processes

Test-Tube Baby

A test-tube baby is the product of a successful human reproduction that results from methods beyond sexual intercourse between a man and a woman and instead utilizes medical intervention that manipulates both the egg and sperm cells for successful fertilization. The term was originally used to refer to the babies born from the earliest applications of artificial insemination and has now been expanded to refer to children born through the use of in vitro fertilization, the practice of fertilizing an embryo outside of a woman's body.

Format: Articles

Subject: Processes, Ethics, Reproduction

Meiosis in Humans

Meiosis, the process by which sexually-reproducing organisms generate gametes (sex cells), is an essential precondition for the normal formation of the embryo. As sexually reproducing, diploid, multicellular eukaryotes, humans rely on meiosis to serve a number of important functions, including the promotion of genetic diversity and the creation of proper conditions for reproductive success.

Format: Articles

Subject: Processes, Reproduction

Multi-Fetal Pregnancy

In humans, multi-fetal pregnancy occurs when a mother carries more than one fetus during the pregnancy. The most common multi-fetal pregnancy is twins, but mothers have given birth to up to eight children (octuplets) from a single pregnancy. Multiple fetusus can result from the release of multiple eggs or multiple ovulations, the splitting of a single fertilized egg, and fertility treatments such as in vitro fertilization (IVF) which involves the insertion of many fertilized eggs into the mother's uterus.

Format: Articles

Subject: Processes, Reproduction

Quickening

Quickening, the point at which a pregnant woman can first feel the movements of the growing embryo or fetus, has long been considered a pivotal moment in pregnancy. Over time, this experience has been used in a variety of contexts, ranging from representing the point of ensoulment to determining whether an abortion was legal to indicating the gender of the unborn baby; philosophy, theology, and law all address the idea of quickening in detail. Beginning with Aristotle, quickening divided the developmental stages of embryo and fetus.

Format: Articles

Subject: Processes, Ethics, Reproduction

Post-Coital Oral Emergency Contraception

Post-coital oral emergency contraception is used for the prevention of pregnancy after intercourse. The contraception comes in the form of pills, often collectively referred to as morning-after pills. Post-coital use of morning-after pills separates them from traditional contraception which is either a continual preventative process, such as the birth control pill, or used during intercourse, such as condoms.

Format: Articles

Subject: Processes, Reproduction

Rh Incompatibility in Pregnancy

Rh incompatibility occurs when a pregnant woman whose blood type is Rh-negative is exposed to Rh-positive blood from her fetus, leading to the mother s development of Rh antibodies. These antibodies have the potential to cross the placenta and attach to fetal red blood cells, resulting in hemolysis, or destruction of the fetus 's red blood cells. This causes the fetus to become anemic, which can lead to hemolytic disease of the newborn. In severe cases, an intrauterine blood transfusion for the fetus may be required to correct the anemia.

Format: Articles

Subject: Processes, Disorders, Reproduction

Nuclear Transplantation

Nuclear transplantation is a method in which the nucleus of a donor cell is relocated to a target cell that has had its nucleus removed (enucleated). Nuclear transplantation has allowed experimental embryologists to manipulate the development of an organism and to study the potential of the nucleus to direct development. Nuclear transplantation, as it was first called, was later referred to as somatic nuclear transfer or cloning.

Format: Articles

Subject: Processes

Fate Map

Early development occurs in a highly organized and orchestrated manner and has long attracted the interest of developmental biologists and embryologists. Cell lineage, or the study of the developmental differentiation of a blastomere, involves tracing a particular cell (blastomere) forward from its position in one of the three germ layers. Labeling individual cells within their germ layers allows for a pictorial interpretation of gastrulation. This chart or graphical representation detailing the fate of each part of an early embryo is referred to as a fate map.

Format: Articles

Subject: Processes

Hensen's Node

A node, or primitive knot, is an enlarged group of cells located in the anterior portion of the primitive streak in a developing gastrula. The node is the site where gastrulation, the formation of the three germ layers, first begins. The node determines and patterns the anterior-posterior axis of the embryo by directing the development of the chordamesoderm. The chordamesoderm is a specific type of mesoderm that will differentiate into the notochord, somites, and neural tube. Those structures will later form the vertebral column.

Format: Articles

Subject: Processes

Process of Eukaryotic Embryonic Development

All sexually reproducing, multicellular diploid eukaryotes begin life as embryos. Understanding the stages of embryonic development is vital to explaining how eukaryotes form and how they are related on the tree of life. This understanding can also help answer questions related to morphology, ethics, medicine, and other pertinent fields of study. In particular, the field of comparative embryology is concerned with documenting the stages of ontogeny.

Format: Articles

Subject: Processes