Search
Filter by Topic
- (-) Remove Processes filter Processes
- Reproduction (10) Apply Reproduction filter
- Theories (7) Apply Theories filter
- Ethics (3) Apply Ethics filter
- Disorders (2) Apply Disorders filter
- Technologies (2) Apply Technologies filter
- Experiments (1) Apply Experiments filter
- Organisms (1) Apply Organisms filter
Beadle's One Gene-One Enzyme Hypothesis
Between 1934 and 1945, George Beadle developed a hypothesis that each gene within the chromosomes of organisms each produced one enzyme. Enzymes are types of proteins that can catalyze reactions inside cells, and the figure shows that each enzyme controls a stage in a series of biochemical reactions. The top box in this figure represents a normal process of enzyme production and biochemical reactions, and the bottom box shows how Beadle's experiments affected the normal biochemical process.
Format: Graphics
Neurospora crassa Life Cycle
This diagram shows the life cycle of Neurospora crassa, a mold that grows on bread. N. crassa can reproduce through an asexual cycle or a sexual cycle. The asexual cycle (colored as a purple circle), begins in this figure with (1a) vegetative mycelium, which are strands of mature fungus. Some of the strands form bulbs (2a) in a process called conidiation. From those bulbs develop the conidia, which are spores. Next, (3a) a single conidium separates from its strand and elongates until it forms mycelium.
Format: Graphics
The Yale Embryo
In 1934 a fourteen-day-old embryo was discovered during a postmortem examination and became famous for being the youngest known human embryo specimen at the time. The embryo was coined "the Yale Embryo," named after the location where it was discovered, Yale University in New Haven, Connecticut. During the early twentieth century, the rush to collect embryos as well as to find younger and younger embryos was at an all time high, and the Yale Embryo is representative of the this enthusiasm.
Format: Articles
Subject: Processes, Reproduction
Umbilical Cord Blood Stem Cells (UCBSC)
Umbilical cord blood (UCB) stem cells are hematopoietic stem cells (HSC) that are recovered from the blood of the umbilical cord and placenta after birth. Umbilical cord blood is rich in cells that express the CD34 molecule, a surface protein that identifies cells as stem cells. Prior to the discovery of UCB stem cells, it was standard procedure to discard the umbilical cord and placenta; now much effort is devoted to raising public awareness and to encouraging people to store or donate cord blood.
Format: Articles
Subject: Processes, Reproduction
Sperm Capacitation
Sperm capacitation refers to the physiological changes spermatozoa must undergo in order to have the ability to penetrate and fertilize an egg. This term was first coined in 1952 by Colin Russell Austin based on independent studies conducted by both Austin himself as well as Min Chueh Chang in 1951. Since the initial reports and emergence of the term, the details of the process have been more clearly elucidated due to technological advancements.
Format: Articles
Subject: Processes
Ectoderm
Ectoderm is one of three germ layers--groups of cells that coalesce early during the embryonic life of all animals except maybe sponges, and from which organs and tissues form. As an embryo develops, a single fertilized cell progresses through multiple rounds of cell division. Eventually, the clump of cells goes through a stage called gastrulation, during which the embryo reorganizes itself into the three germ layers: endoderm, ectoderm, and mesoderm. After gastrulation, the embryo goes through a process called neurulation, which starts the development of nervous system.
Format: Articles
Subject: Processes
Test-Tube Baby
A test-tube baby is the product of a successful human reproduction that results from methods beyond sexual intercourse between a man and a woman and instead utilizes medical intervention that manipulates both the egg and sperm cells for successful fertilization. The term was originally used to refer to the babies born from the earliest applications of artificial insemination and has now been expanded to refer to children born through the use of in vitro fertilization, the practice of fertilizing an embryo outside of a woman's body.
Format: Articles
Subject: Processes, Ethics, Reproduction
Mesoderm
Mesoderm is one of the three germ layers, groups of cells that interact early during the embryonic life of animals and from which organs and tissues form. As organs form, a process called organogenesis, mesoderm interacts with endoderm and ectoderm to give rise to the digestive tract, the heart and skeletal muscles, red blood cells, and the tubules of the kidneys, as well as a type of connective tissue called mesenchyme. All animals that have only one plane of symmetry through the body, called bilateral symmetry, form three germ layers.
Format: Articles
Subject: Processes
Ectopic Pregnancy
Many difficulties can arise with a pregnancy even after the sperm successfully fertilizes the oocyte. A major problem occurs if the fertilized egg tries to implant before reaching its normal implantation site, the uterus. An ectopic pregnancy occurs when a fertilized egg implants anywhere other than in the uterus, most commonly in the fallopian tubes. Ectopic pregnancies cannot continue to term, so a physician must remove the developing embryo as early as possible.
Format: Articles
Subject: Disorders, Processes, Reproduction
Reassessment of Carrel's Immortal Tissue Culture Experiments
In the 1910s, Alexis Carrel, a French surgeon and biologist, concluded that cells are intrinsically immortal. His claim was based on chick-heart tissue cultures in his laboratory that seemed to be able to proliferate forever. Carrel's ideas about cellular immortality convinced his many contemporaries that cells could be maintained indefinitely. In the 1960s, however, Carrel's thesis about cell immortality was put into question by the discovery that human diploid cells can only proliferate for a finite period.
Format: Articles
Essay: Homology
Homology is a central concept of comparative and evolutionary biology, referring to the presence of the same bodily parts (e.g., morphological structures) in different species. The existence of homologies is explained by common ancestry, and according to modern definitions of homology, two structures in different species are homologous if they are derived from the same structure in the common ancestor.
Format: Essays and Theses
Subject: Processes
Endothelium
The endothelium is the layer of cells lining the blood vessels in animals. It weighs more than one kilogram in adult humans, and it covers a surface area of 4000 to 7000 square meters. The endothelium is the cellular interface between the circulating blood and underlying tissue. As the medium between these two sets of tissues, endothelium is part of many normal and disease processes throughout the body.
Format: Articles
Abortion
Abortion is the removal of the embryo or fetus from the womb, before birth can occur-either naturally or by induced labor. Prenatal development occurs in three stages: the zygote, or fertilized egg; the embryo, from post-conception to eight weeks; and the fetus, from eight weeks after conception until the baby is born. After abortion, the infant does not and cannot live. Spontaneous abortion is the loss of the infant naturally or accidentally, without the will of the mother. It is more commonly referred to as miscarriage.
Format: Articles
Subject: Processes, Ethics, Reproduction
Biological Clocks and the Formation of Human Tooth Enamel
Tooth enamel contains relics of its formation process, in the form of microstructures, which indicate the incremental way in which it forms. These microstructures, called cross-striations and striae of Retzius, develop as enamel-forming cells called ameloblasts, whcih cyclically deposit enamel on developing teeth in accordance with two different biological clocks. Cross-striations result from a twenty-four hour cycle, called a Circadian rhythm, in the enamel deposition process, while striae of Retzius have a longer periodicity.
Format: Articles
Subject: Processes
The Effects of Thalidomide on Embryonic Development
Embryogenesis is an intricate process that can easily be disrupted by means of teratogenic agents. Some of these agents target the embryonic period's "window of susceptibility," three to eight weeks after a pregnant woman's last menstruation, when the highest degree of sensitivity to embryonic cell differentiation and organ formation occurs. The embryonic period or critical period is when most organ systems form, whereas the fetal period, week eight to birth, involves the growth and modeling of the organ systems.
Format: Articles
Homeobox Genes and the Homeobox
Homeobox genes are a cluster of regulatory genes that are spatially and temporally expressed during early embryological development. They are interesting from both a developmental and evolutionary perspective since their sequences are highly conserved and shared across an enormously wide array of living taxa.
Format: Articles
Subject: Processes
Gastrulation in Mus musculus (common house mouse)
As mice embryos develop, they undergo a stage of development called gastrulation. The hallmark of vertebrate gastrulation is the reorganization of the inner cell mass (ICM) into the three germ layers: ectoderm, mesoderm, and endoderm. Mammalian embryogenesis occurs within organisms; therefore, gastrulation was originally described in species with easily observable embryos. For example, the African clawed frog (Xenopus laevis) is the most widely used organism to study gastrulation because the large embryos develop inside a translucent membrane.
Format: Articles
Subject: Processes, Experiments
Fate Map
Early development occurs in a highly organized and orchestrated manner and has long attracted the interest of developmental biologists and embryologists. Cell lineage, or the study of the developmental differentiation of a blastomere, involves tracing a particular cell (blastomere) forward from its position in one of the three germ layers. Labeling individual cells within their germ layers allows for a pictorial interpretation of gastrulation. This chart or graphical representation detailing the fate of each part of an early embryo is referred to as a fate map.
Format: Articles
Subject: Processes
Circulatory Changes at Birth
When placental mammals are born their circulatory systems undergo radical changes as the newborns are prepared for independent life. The lungs are engaged, becoming the primary source of fresh oxygen, replacing the placental barrier as a means for blood-gas exchange.
Format: Articles
Subject: Processes
Somites: Formation and Role in Developing the Body Plan
Somites are blocks of mesoderm that are located on either side of the neural tube in the developing vertebrate embryo. Somites are precursor populations of cells that give rise to important structures associated with the vertebrate body plan and will eventually differentiate into dermis, skeletal muscle, cartilage, tendons, and vertebrae. Somites also determine the migratory paths of neural crest cells and of the axons of spinal nerves.
Format: Articles
Subject: Processes
Process of Eukaryotic Embryonic Development
All sexually reproducing, multicellular diploid eukaryotes begin life as embryos. Understanding the stages of embryonic development is vital to explaining how eukaryotes form and how they are related on the tree of life. This understanding can also help answer questions related to morphology, ethics, medicine, and other pertinent fields of study. In particular, the field of comparative embryology is concerned with documenting the stages of ontogeny.
Format: Articles
Subject: Processes
The Apgar Score (1953-1958)
In 1952 Virginia Apgar, a physician at the Sloane Women’s Hospital in New York City, New York, created the Apgar score as a method of evaluating newborn infants’ health to determine if they required medical intervention. The score included five separate categories, including heart rate, breathing rate, reaction to stimuli, muscle activity, and color. An infant received a score from zero to two in each category, and those scores added up to the infant’s total score out of ten. An infant with a score of ten was healthy, and those with low scores required medical attention at birth.
Format: Articles
Subject: Technologies, Processes
Embryonic Differentiation in Animals
Embryonic differentiation is the process of development during which embryonic cells specialize and diverse tissue structures arise. Animals are made up of many different cell types, each with specific functions in the body. However, during early embryonic development, the embryo does not yet possess these varied cells; this is where embryonic differentiation comes into play. The differentiation of cells during embryogenesis is the key to cell, tissue, organ, and organism identity.
Format: Articles
Subject: Processes
Germ Layers
A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through the process of gastrulation. During gastrulation, a hollow cluster of cells called a blastula reorganizes into two primary germ layers: an inner layer, called endoderm, and an outer layer, called ectoderm.
Format: Articles
Multi-Fetal Pregnancy
In humans, multi-fetal pregnancy occurs when a mother carries more than one fetus during the pregnancy. The most common multi-fetal pregnancy is twins, but mothers have given birth to up to eight children (octuplets) from a single pregnancy. Multiple fetusus can result from the release of multiple eggs or multiple ovulations, the splitting of a single fertilized egg, and fertility treatments such as in vitro fertilization (IVF) which involves the insertion of many fertilized eggs into the mother's uterus.
Format: Articles
Subject: Processes, Reproduction