Search

Displaying 1 - 25 of 572 items.

Pages

George Wells Beadle (1903-1989)

George Wells Beadle studied corn, fruit flies, and funguses in the US during the twentieth century. These studies helped Beadle earn the 1958 Nobel Prize in Physiology or Medicine. Beadle shared the prize with Edward Tatum for their discovery that genes help regulate chemical processes in and between cells. This finding, initially termed the one gene-one enzyme hypothesis, helped scientists develop new techniques to study genes and DNA as molecules, not just as units of heredity between generations of organisms.

Format: Articles

Subject: People

G. P. Wells

Format: Photographs

Subject: People

George W. Beadle's One Gene-One Enzyme Hypothesis

The one gene-one enzyme hypothesis, proposed by George Wells Beadle in the US in 1941, is the theory that each gene directly produces a single enzyme, which consequently affects an individual step in a metabolic pathway. In 1941, Beadle demonstrated that one gene in a fruit fly controlled a single, specific chemical reaction in the fruit fly, which one enzyme controlled.

Format: Articles

Subject: Theories

"Genetic Control of Biochemical Reactions in Neurospora" (1941), by George W. Beadle and Edward L. Tatum

George Wells Beadle and Edward Lawrie Tatum's 1941 article Genetic Control of Biochemical Reactions in Neurospora detailed their experiments on how genes regulated chemical reactions, and how the chemical reactions in turn affected development in the organism. Beadle and Tatum experimented on Neurospora, a type of bread mold, and they concluded that mutations to genes affected the enzymes of organisms, a result that biologists later generalized to proteins, not just enzymes.

Format: Articles

Subject: Experiments

Beadle's One Gene-One Enzyme Hypothesis

Between 1934 and 1945, George Beadle developed a hypothesis that each gene within the chromosomes of organisms each produced one enzyme. Enzymes are types of proteins that can catalyze reactions inside cells, and the figure shows that each enzyme controls a stage in a series of biochemical reactions. The top box in this figure represents a normal process of enzyme production and biochemical reactions, and the bottom box shows how Beadle's experiments affected the normal biochemical process.

Format: Graphics

Subject: Theories, Processes

Beadle and Ephrussi's Transplantation Technique for Drosophila

Boris Ephrussi and George Wells Beadle developed a transplantation technique on flies, Drosophila melanogaster, which they described in their 1936 article A Technique of Transplantation for Drosophila. The technique of injecting a tissue from one fly larva into another fly larva, using a micropipette, to grow that tissue in the second larvae, was a means for investigating development of Drosophila. Through this technique, Beadle and Ephrussi studied the role of genes in embryological processes.

Format: Articles

Subject: Technologies

Beadle and Tatum's 1941 Experiments with Neurospora Revealed that Genes Produce Enzymes

This illustration shows George Beadle and Edward Tatum's experiments with Neurospora crassa that indicated that single genes produce single enzymes. The pair conducted the experiments at Stanford University in Palo Alto, California. Enzymes are types of proteins that can catalyze reactions inside cells, reactions that produce a number of things, including nutrients that the cell needs. Neurospora crassa is a species of mold that grows on bread.

Format: Graphics

Subject: Theories, Experiments

Beadle and Ephrussi’s Technique to Transplant Optic Discs between Fruit Fly Larvae

In 1935, George Beadle and Boris Ephrussi developed a technique to transplant optic discs between fruit fly larvae. They developed it while at the California Institute of Technology in Pasedena, California. Optic discs are tissues from which the adult eyes develop. Beadle and Ephrussi used their technique to study the development of the eye and eye pigment. (1) The experimenter dissects a donor larva, which is in the third instar stage of development, and removes the optic disc (colored red) with a micropipette.

Format: Graphics

Subject: Technologies, Experiments, Organisms

Neurospora crassa Life Cycle

This diagram shows the life cycle of Neurospora crassa, a mold that grows on bread. N. crassa can reproduce through an asexual cycle or a sexual cycle. The asexual cycle (colored as a purple circle), begins in this figure with (1a) vegetative mycelium, which are strands of mature fungus. Some of the strands form bulbs (2a) in a process called conidiation. From those bulbs develop the conidia, which are spores. Next, (3a) a single conidium separates from its strand and elongates until it forms mycelium.

Format: Graphics

Subject: Organisms, Processes, Theories

Neurospora crassa

Neurospora crassa is a red mold that scientists use to study genetics. N. crassa commonly grows on bread as shown in the top left corner of this figure. To culture the mold in lab, researchers grow it in glassware such as test tubes, Erlenmeyer flasks, and petri dishes, as shown in the top right corner of the figure. In the glassware, researchers place a gel, called a medium, of agar, sucrose, salts, and vitamins. The mold grows on the medium, and cotton stoppers prevent anything from contaminating the mold.

Format: Graphics

Subject: Organisms

Beadle and Ephrussi Show that Something Besides Eye Tissue Determines Eye Color in Fruit Flies

In the 1930s, George Beadle and Boris Ephrussi discovered factors that affect eye colors in developing fruit flies. They did so while working at the California Institute of Technology in Pasadena, California. (1) They took optic discs (colored fuchsia in the image) from fruit fly larvae in the third instar stage of development. Had the flies not been manipulated, they would have developed into adults with vermilion eyes.

Format: Graphics

Subject: Experiments, Organisms

Boris Ephrussi (1901-1979)

Boris Ephrussi studied fruit flies, yeast, and mouse genetics and development while working in France and the US during the twentieth century. In yeast, Ephrussi studied how mutations in the cytoplasm persisted across generations. In mice he studied the genetics of hybrids and the development of cancer. Working with George Wells Beadle on the causes of different eye colors in fruit flies, Ephrussi's research helped establish the one-gene-one-enzyme hypothesis. Ephrussi helped create new embryological techniques and contributed the theories of genetics and development.

Format: Articles

Subject: People

George Washington Corner (1889-1981)

As the third director of the Carnegie Institute of Washington s Department of Embryology, George Washington Corner made a number of contributions to the life sciences as well as to administration. Corner was born on 12 December 1889 in Baltimore, Maryland, near the newly established Johns Hopkins University. Although Corner was not exposed to science much in school at a young age, he developed an early appreciation for science through conversations with his father about geography and by looking through the family's National Geographic magazines.

Format: Articles

Subject: People

Georges Cuvier (1769-1832)

Georges Cuvier, baptized Georges Jean-Leopold Nicolas-Frederic Cuvier, was a professor of anatomy at the National Museum of Natural History in Paris, France, through the late eighteenth and early nineteenth centuries. Scholars recognize Cuvier as a founder of modern comparative anatomy, and as an important contributor to vertebrate paleontology and geology. Cuvier studied the form and function of animal anatomy, writing four volumes on quadruped fossils and co-writing eleven volumes on the natural history of fish with Achille Valenciennes.

Format: Articles

Subject: People

President George W. Bush's Announcement on Stem Cells, 9 August 2001

On 9 August 2001, US President George W. Bush gave an eleven-minute speech from his ranch in Crawford, Texas, on the ethics and fate of federal funding for stem cell research. Bush also announced the creation of a special council to oversee stem cell research. In the speech President Bush acknowledged the importance of issues surrounding stem cell research to many Americans, presented different arguments in favor of and opposing embryonic stem cell research, and explained his decision to limit but not completely eliminate potential federal funding for embryonic stem cell (ESC) research.

Format: Articles

Subject: Legal

John George Children (1777–1852)

John George Children described several species of insects and animals while working at the British Museum in London, England, in the eighteenth and nineteenth centuries. Children also conducted research on chemical batteries called voltaic cells and briefly studied and manufactured gunpowder. One of the species he described, the Children’s python, or Antaresia children, was used in the twenty-first century as the subject of experiments that involved the biological cost of reproduction in snakes.

Format: Articles

Subject: People

Etienne Geoffroy Saint-Hilaire (1772-1844)

Etienne Geoffroy Saint-Hilaire, commonly known as Geoffroy, studied animals, their anatomy and their embryos, and teratogens at the National Museum of Natural History in Paris, France in the eighteenth and nineteenth centuries. Geoffroy also helped develop several specialized fields in the life sciences, including experimental embryology. In his efforts to experimentally demonstrate the theory of recapitulation, Geoffroy developed techniques to intervene in the growth of embryos to see whether they would develop into different kinds of organisms.

Format: Articles

Subject: People

Oviraptor philoceratops Dinosaurs

Oviraptor philoceratops was a small bird-like dinosaur that lived about seventy-five million years ago, during the late Cretaceous period. In 1923, George Olsen of the American Museum of Natural History (AMNH) in New York City, New York, discovered the first Oviraptor fossilized skeleton on top of a dinosaur egg nest in the Gobi Desert, Mongolia. Because of the close proximity of dinosaur and nest, when Henry Fairfield Osborn president of the AMNH published on the discovery, he assumed that the Oviraptor had died attempting to steal the eggs.

Format: Articles

Subject: Organisms

George Weill

Format: Photographs

Subject: People

George Gray

Format: Photographs

Subject: People

George Clarke

Format: Photographs

Subject: People

Pages