Search

Displaying 51 - 75 of 229 items.

Beadle's One Gene-One Enzyme Hypothesis

Between 1934 and 1945, George Beadle developed a hypothesis that each gene within the chromosomes of organisms each produced one enzyme. Enzymes are types of proteins that can catalyze reactions inside cells, and the figure shows that each enzyme controls a stage in a series of biochemical reactions. The top box in this figure represents a normal process of enzyme production and biochemical reactions, and the bottom box shows how Beadle's experiments affected the normal biochemical process.

Format: Graphics

Subject: Theories, Processes

Beadle and Tatum's 1941 Experiments with Neurospora Revealed that Genes Produce Enzymes

This illustration shows George Beadle and Edward Tatum's experiments with Neurospora crassa that indicated that single genes produce single enzymes. The pair conducted the experiments at Stanford University in Palo Alto, California. Enzymes are types of proteins that can catalyze reactions inside cells, reactions that produce a number of things, including nutrients that the cell needs. Neurospora crassa is a species of mold that grows on bread.

Format: Graphics

Subject: Theories, Experiments

Neurospora crassa

Neurospora crassa is a red mold that scientists use to study genetics. N. crassa commonly grows on bread as shown in the top left corner of this figure. To culture the mold in lab, researchers grow it in glassware such as test tubes, Erlenmeyer flasks, and petri dishes, as shown in the top right corner of the figure. In the glassware, researchers place a gel, called a medium, of agar, sucrose, salts, and vitamins. The mold grows on the medium, and cotton stoppers prevent anything from contaminating the mold.

Format: Graphics

Subject: Organisms

Beadle and Ephrussi's Transplantation Technique for Drosophila

Boris Ephrussi and George Wells Beadle developed a transplantation technique on flies, Drosophila melanogaster, which they described in their 1936 article A Technique of Transplantation for Drosophila. The technique of injecting a tissue from one fly larva into another fly larva, using a micropipette, to grow that tissue in the second larvae, was a means for investigating development of Drosophila. Through this technique, Beadle and Ephrussi studied the role of genes in embryological processes.

Format: Articles

Subject: Technologies

Beadle and Ephrussi Show that Something Besides Eye Tissue Determines Eye Color in Fruit Flies

In the 1930s, George Beadle and Boris Ephrussi discovered factors that affect eye colors in developing fruit flies. They did so while working at the California Institute of Technology in Pasadena, California. (1) They took optic discs (colored fuchsia in the image) from fruit fly larvae in the third instar stage of development. Had the flies not been manipulated, they would have developed into adults with vermilion eyes.

Format: Graphics

Subject: Experiments, Organisms

Beadle and Ephrussi’s Technique to Transplant Optic Discs between Fruit Fly Larvae

In 1935, George Beadle and Boris Ephrussi developed a technique to transplant optic discs between fruit fly larvae. They developed it while at the California Institute of Technology in Pasedena, California. Optic discs are tissues from which the adult eyes develop. Beadle and Ephrussi used their technique to study the development of the eye and eye pigment. (1) The experimenter dissects a donor larva, which is in the third instar stage of development, and removes the optic disc (colored red) with a micropipette.

Format: Graphics

Subject: Technologies, Experiments, Organisms

Etienne Geoffroy Saint-Hilaire (1772-1844)

Etienne Geoffroy Saint-Hilaire, commonly known as Geoffroy, studied animals, their anatomy and their embryos, and teratogens at the National Museum of Natural History in Paris, France in the eighteenth and nineteenth centuries. Geoffroy also helped develop several specialized fields in the life sciences, including experimental embryology. In his efforts to experimentally demonstrate the theory of recapitulation, Geoffroy developed techniques to intervene in the growth of embryos to see whether they would develop into different kinds of organisms.

Format: Articles

Subject: People

Oviraptor philoceratops Dinosaurs

Oviraptor philoceratops was a small bird-like dinosaur that lived about seventy-five million years ago, during the late Cretaceous period. In 1923, George Olsen of the American Museum of Natural History (AMNH) in New York City, New York, discovered the first Oviraptor fossilized skeleton on top of a dinosaur egg nest in the Gobi Desert, Mongolia. Because of the close proximity of dinosaur and nest, when Henry Fairfield Osborn president of the AMNH published on the discovery, he assumed that the Oviraptor had died attempting to steal the eggs.

Format: Articles

Subject: Organisms

Thesis: The Hwang Woo-Suk Scandal and the Development of Bioethics in South Korea

In 2004, the South Korean geneticist Woo-Suk Hwang published what was widely regarded as the most important research finding in biotechnology that year. In the prestigious American journal Science, he claimed that he had succeeded in cloning a human blastocyst, which is an embryo in its early developmental stages (Hwang et al. 2004). A year later, in a second Science article, he made the earth-shattering announcement that he had derived eleven embryonic stem cell lines using his cloning technique (Hwang et al. 2005). The international scientific community was stunned.

Format: Essays and Theses

Subject: Ethics, People

Multiplex Automated Genome Engineering (MAGE)

Multiplex Automated Genome Engineering, or MAGE, is a genome editing technique that enables scientists to quickly edit an organism’s DNA to produce multiple changes across the genome. In 2009, two genetic researchers at the Wyss Institute at Harvard Medical School in Boston, Massachusetts, Harris Wang and George Church, developed the technology during a time when researchers could only edit one site in an organism’s genome at a time.

Format: Articles

Subject: Technologies, Processes

“Diethylstilbestrol in the Prevention and Treatment of Complications of Pregnancy” (1948), by Olive Watkins Smith

In 1948, Olive Watkins Smith published 'Diethylstilbestrol in the Prevention and Treatment of Complications of Pregnancy' in the American Journal of Obstetrics and Gynecology. In 632 women treated with diethylstilbestrol, Smith demonstrated that the drug stimulated the production of progesterone, a hormone that regulates the uterine condition during pregnancy.

Format: Articles

Subject: Publications

HeLa Cell Line

The HeLa cell line was the first immortal human cell line that George Otto Gey, Margaret Gey, and Mary Kucibek first isolated from Henrietta Lacks and developed at The Johns Hopkins Hospital in Baltimore, Maryland, in 1951. An immortal human cell line is a cluster of cells that continuously multiply on their own outside of the human from which they originated. Scientists use immortal human cell lines in their research to investigate how cells function in humans.

Format: Articles

Subject: Technologies, Experiments, People, Ethics

Frank Rattray Lillie (1870-1947)

Frank R. Lillie was born in Toronto, Canada, on 27 June 1870. His mother was Emily Ann Rattray and his father was George Waddell Little, an accountant and co-owner of a wholesale drug company. While in high school Lillie took up interests in entomology and paleontology but went to the University of Toronto with the aim of studying ministry. He slowly became disillusioned with this career choice and decided to major in the natural sciences. It was during his senior year that he developed his lifelong interest in embryology.

Format: Articles

Subject: People

Wilhelm Johannsen's Genotype-Phenotype Distinction

Wilhelm Johannsen in Denmark first proposed the distinction between genotype and phenotype in the study of heredity in 1909. This distinction is between the hereditary dispositions of organisms (their genotypes) and the ways in which those dispositions manifest themselves in the physical characteristics of those organisms (their phenotypes). This distinction was an outgrowth of Johannsen's experiments concerning heritable variation in plants, and it influenced his pure line theory of heredity.

Format: Articles

Subject: Theories

Johann Friedrich Meckel, the Younger (1781-1833)

Johann Friedrich Meckel studied abnormal animal and human anatomy in nineteenth century Germany in an attempt to explain embryological development. During Meckel's lifetime he catalogued embryonic malformations in multiple treatises. Meckel's focus on malformations led him to develop concepts like primary and secondary malformations, atavism, and recapitulation- all of which influenced the fields of medicine and embryology during the nineteenth and twentieth centuries.

Format: Articles

Subject: People

Rosalind Elsie Franklin (1920-1958)

Rosalind Elsie Franklin worked with X-ray crystallography at King's College London, UK, and she helped determine the helical structure of DNA in the early 1950s. Franklin's research helped establish molecular genetics, a field that investigates how heredity works on the molecular level. The discovery of the structure of DNA also made future research possible into the molecular basis of embryonic development, genetic disorders, and gene manipulation.

Format: Articles

Subject: People

Ectoderm

Ectoderm is one of three germ layers--groups of cells that coalesce early during the embryonic life of all animals except maybe sponges, and from which organs and tissues form. As an embryo develops, a single fertilized cell progresses through multiple rounds of cell division. Eventually, the clump of cells goes through a stage called gastrulation, during which the embryo reorganizes itself into the three germ layers: endoderm, ectoderm, and mesoderm. After gastrulation, the embryo goes through a process called neurulation, which starts the development of nervous system.

Format: Articles

Subject: Processes

The Debate over DNA Replication Before the Meselson-Stahl Experiment (1953–1957)

Between 1953 and 1957, before the Meselson-Stahl experiment verified semi-conservative replication of DNA, scientists debated how DNA replicated. In 1953, James Watson and Francis Crick proposed that DNA was composed of two helical strands that wound together in a coil. Their model suggested a replication mechanism, later termed semi-conservative replication, in which parental DNA strands separated and served as templates for the replication of new daughter strands.

Format: Articles

Subject: Theories

Title X Family Planning Program (1970–1977)

The Family Planning Services and Public Research Act of 1970, often called Title X Family Planning Program, is a US federal law that provides federal funding for family planning services to low income or uninsured families. The US federal government passed the law, Public Law 91-572, in 1970 as an amendment to the Public Health Services Act of 1944. The Act created the Office of Population Affairs (OPA) under the Secretary of Health, Education, and Welfare (here called the Secretary).

Format: Articles

Subject: Reproduction, Legal

Freedom of Access to Clinic Entrances Act (1994)

On 26 May 1994, US President Bill Clinton signed the Freedom of Access to Clinic Entrances Act in to law, which federally criminalized acts of obstruction and violence towards reproductive health clinics. The law was a reaction to the increasing violence toward abortion clinics, providers, and patients during the 1990s. That violence included clinic blockades and protests, assaults on physicians and patients, and murders. The Freedom of Access to Clinic Entrances Act established

Format: Articles

Subject: Legal

Franklin Paine Mall (1862-1917)

Franklin Paine Mall was born into a farming family in Belle Plaine, Iowa, on 28 September 1862. While he attended a local academy, an influential teacher fueled Mall's interest in science. From 1880-1883, he studied medicine at the University of Michigan, attaining his MD degree in 1883. William J. Mayo, who later became a famous surgeon and co-founder of the Mayo Clinic in Rochester, Minnesota, was a classmate of Mall's. Throughout his studies at Michigan, he was influenced by Corydon L. Ford, a professor of anatomy, Victor C.

Format: Articles

Subject: People

Free Hospital for Women Scrapbook by Harvard University Library

This scrapbook is part of the Harvard University Library's collection on "Working Women, 1800-1930," which is itself part of the Open Collections Program. The print version is located at the Francis A. Countway Library of Medicine. It contains information about the hospital, including articles from newspapers, magazines, and other publications; photographs of the hospital, employees, and special events; lecture announcements; letters and other forms of correspondence; ration cards; tickets; forms; certificates; posters; programs; and playbills.

Format: Articles

Subject: Organizations, Ethics, Reproduction

Elizabeth Maplesden Ramsey (1906-1993)

Physician and pathologist Elizabeth Maplesden Ramsey was a member of the Carnegie Institution of Washington (CIW) for thirty-nine years. The affiliation began in 1934, when Ramsey discovered what was assumed to be the youngest-known embryo at the time, and donated it to CIW's massive embryo collection. After studying embryos, Ramsey focused her research on placental circulation in primates.

Format: Articles

Subject: People

Carnegie Stages

Historically the exact age of human embryo specimens has long perplexed embryologists. With the menstrual history of the mother often unknown or not exact, and the premenstrual and postmenstrual phases varying considerably among women, age sometimes came down to a best guess based on the weight and size of the embryo. Wilhelm His was one of the first to write comparative descriptions of human embryos in the late 1800s. Soon afterward, Franklin P. Mall, the first director of the Carnegie Institution of Washington's (CIW) Department of Embryology, expanded upon His' work.

Format: Articles

Subject: Theories

The Yale Embryo

In 1934 a fourteen-day-old embryo was discovered during a postmortem examination and became famous for being the youngest known human embryo specimen at the time. The embryo was coined "the Yale Embryo," named after the location where it was discovered, Yale University in New Haven, Connecticut. During the early twentieth century, the rush to collect embryos as well as to find younger and younger embryos was at an all time high, and the Yale Embryo is representative of the this enthusiasm.

Format: Articles

Subject: Processes, Reproduction