Search

Displaying 376 - 400 of 646 items.

Mesoderm

Mesoderm is one of the three germ layers, groups of cells that interact early during the embryonic life of animals and from which organs and tissues form. As organs form, a process called organogenesis, mesoderm interacts with endoderm and ectoderm to give rise to the digestive tract, the heart and skeletal muscles, red blood cells, and the tubules of the kidneys, as well as a type of connective tissue called mesenchyme. All animals that have only one plane of symmetry through the body, called bilateral symmetry, form three germ layers.

Format: Articles

Subject: Processes

Germ Layers

A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through the process of gastrulation. During gastrulation, a hollow cluster of cells called a blastula reorganizes into two primary germ layers: an inner layer, called endoderm, and an outer layer, called ectoderm.

Format: Articles

Subject: Theories, Processes

"Cell Deaths in Normal Vertebrate Ontogeny" (1951), by Alfred Glücksmann

The review article “Cell Deaths in Normal Vertebrate Ontogeny” (abbreviated as “Cell Deaths”) was published in Biological Reviews of the Cambridge Philosophy Society in 1951. The author, Alfred Glücksmann, was a German developmental biologist then working at the Strangeways Research Laboratory, Cambridge, England. In “Cell Deaths,” Glücksmann summarizes observations about cell death in normal vertebrate development that he had compiled from literature published during the first half of the twentieth century.

Format: Articles

Subject: Publications

"Sheep Cloned by Nuclear Transfer from a Cultured Cell Line" (1996), by Keith Campbell, Jim McWhir, William Ritchie, and Ian Wilmut

In 1995 and 1996, researchers at the Roslin Institute in Edinburgh, Scotland, cloned mammals for the first time. Keith Campbell, Jim McWhir, William Ritchie, and Ian Wilmut cloned two sheep, Megan and Morag, using sheep embryo cells. The experiments indicated how to reprogram nuclei from differentiated cells to produce live offspring, and that a single population of differentiated cells could produce multiple offspring. They reported their results in the article 'Sheep Cloned by Nuclear Transfer from a Cultured Cell Line' in March 1996.

Format: Articles

Subject: Experiments

"The Development of the Turtle Carapace" (1989), by Ann Campbell Burke

Ann Campbell Burke examines the development and evolution of vertebrates, in particular, turtles. Her Harvard University experiments, described in Development of the Turtle Carapace: Implications for the Evolution of a Novel Bauplan, were published in 1989. Burke used molecular techniques to investigate the developmental mechanisms responsible for the formation of the turtle shell.

Format: Articles

Subject: Experiments, Publications

Gastrulation in Xenopus

The process of gastrulation allows for the formation of the germ layers in metazoan embryos, and is generally achieved through a series of complex and coordinated cellular movements. The process of gastrulation can be either diploblastic or triploblastic. In diploblastic organisms like cnidaria or ctenophora, only the endoderm and the ectoderm form; in triploblastic organisms (most other complex metazoans), triploblastic gastrulation produces all three germ layers.

Format: Articles

Subject: Processes

Thomas Joseph King Jr. (1921-2000)

Thomas Joseph King Jr. was a developmental biologist who, with fellow scientist Robert Briggs, pioneered a method of transplanting nuclei from blastula cells into fresh egg cells lacking nuclei. This method, dubbed nuclear transplantation, facilitated King's studies on cancer cell development. King's work was instrumental for the development of cloning of fish, insects, and mammals.

Format: Articles

Subject: People

Teratogens

Teratogens are substances that may produce physical or functional defects in the human embryo or fetus after the pregnant woman is exposed to the substance. Alcohol and cocaine are examples of such substances. Exposure to the teratogen affects the fetus or embryo in a variety of ways, such as the duration of exposure, the amount of teratogenic substance, and the stage of development the embryo or fetus is in during the exposure.

Format: Articles

Subject: Disorders

Cocaine as a Teratogen

Cocaine use by pregnant women has a variety of effects on the embryo and fetus, ranging from various gastro-intestinal and cardiac defects to tissue death from insufficient blood supply. Thus, cocaine has been termed a teratogen, or an agent that causes defects in fetuses during prenatal development. Cocaine is one of the most commonly used drugs in the US and it has a history of both medical and illegal recreational use. It is a drug capable of a wide array of effects on physical and mental health.

Format: Articles

Subject: Reproduction, Disorders

"Developmental Effects of Endocrine-Disrupting Chemicals in Wildlife and Humans" (1993), by Theo Colborn, Frederick S. vom Saal, and Ana M. Soto

Developmental Effects of Endocrine-Disrupting Chemicals in Wildlife and Humans, was published in 1993 in Environmental Health Perspectives. In the article, the authors present an account of two decades' worth of scientific research that describes the effects of certain pollutants on the health of wildlife, domestic animals, and humans, particularly when exposure takes place during embryonic growth. The term endocrine disruptor was coined in the article to describe the chemical pollutants that target the development and function of the endocrine system.

Format: Articles

Subject: Publications

Rosalind Elsie Franklin (1920-1958)

Rosalind Elsie Franklin worked with X-ray crystallography at King's College London, UK, and she helped determine the helical structure of DNA in the early 1950s. Franklin's research helped establish molecular genetics, a field that investigates how heredity works on the molecular level. The discovery of the structure of DNA also made future research possible into the molecular basis of embryonic development, genetic disorders, and gene manipulation.

Format: Articles

Subject: People

Howard Wilber Jones Jr.

Howard Wilber Jones Jr. and his wife, Georgeanna Seegar Jones, developed a method of in vitro fertilization and helped create the first baby in the US using that method. Though the first in vitro baby was born in England in 1978, Jones and his wife's contribution allowed for the birth of Elizabeth Carr on 28 December 1981. Jones, a gynecologist and an obstetrician, researched human reproduction for most of his life.

Format: Articles

Subject: People, Reproduction

Karl Oskar Illmensee (1939–)

Karl Oskar Illmensee studied the cloning and reproduction of fruit flies, mice, and humans in the US and Europe during the twentieth and twenty-first centuries. Illmensee used nuclear transfer techniques (cloning) to create early mouse embryos from adult mouse cells, a technique biologists used in later decades to help explain how embryonic cells function during development. In the early 1980s, Illmensee faced accusations of fraud when others were unable to replicate the results of his experiments with cloned mouse embryos.

Format: Articles

Subject: People, People

"The Developmental Capacity of Nuclei Taken from Intestinal Epithelium Cells of Feeding Tadpoles" (1962), by John B. Gurdon

In 1962 researcher John Bertrand Gurdon at the University of Oxford in Oxford, England, conducted a series of experiments on the developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. In the experiments, Gurdon conducted nuclear transplantation, or cloning, of differentiated cells, or cells that have already specialized to become one cell type or another, in tadpoles. Gurdon's experiment showed that differentiated adult cells could be induced to an undifferentiated state, where they could once again become multiple cell types.

Format: Articles

Subject: Experiments

“Survival of Mouse Embryos Frozen to -196 ° and -269 °C” (1972), by David Whittingham, Stanley Leibo, and Peter Mazur

In 1972, David Whittingham, Stanley Leibo, and Peter Mazur published the paper, “Survival of Mouse Embryos Frozen to -196 ° and -269 °C,” hereafter, “Survival of Mouse Embryos,” in the journal Science. The study marked one of the first times that researchers had successfully cryopreserved, or preserved and stored by freezing, a mammalian embryo and later transferred that embryo to a live mouse who gave birth to viable offspring. Previously, scientists had only been successful cryopreserving single cells, like red blood cells.

Format: Articles

Subject: Experiments, Publications

Carnegie Stages

Historically the exact age of human embryo specimens has long perplexed embryologists. With the menstrual history of the mother often unknown or not exact, and the premenstrual and postmenstrual phases varying considerably among women, age sometimes came down to a best guess based on the weight and size of the embryo. Wilhelm His was one of the first to write comparative descriptions of human embryos in the late 1800s. Soon afterward, Franklin P. Mall, the first director of the Carnegie Institution of Washington's (CIW) Department of Embryology, expanded upon His' work.

Format: Articles

Subject: Theories

Albrecht von Haller (1708-1777)

Victor Albrecht von Haller was an 18th century scientist who did extensive work in the life sciences, including anatomy and physiology, botany, and developmental biology. His embryological work consisted of experiments in understanding the process of generation, and led him to adopt the model of preformationism called ovism (the idea that the new individual exists within the maternal egg prior to conception). Haller was born in Bern, Switzerland, on 16 October, 1708. His mother was Anna Maria Engel, and his father was Niklaus Emanuel Haller.

Format: Articles

Subject: People

Preformationism in the Enlightenment

Preformationism was a theory of embryological development used in the late seventeenth through the late eighteenth centuries. This theory held that the generation of offspring occurs as a result of an unfolding and growth of preformed parts. There were two competing models of preformationism: the ovism model, in which the location of these preformed parts prior to gestation was the maternal egg, and the spermism model, in which a preformed individual or homunculus was thought to exist in the head of each sperm.

Format: Articles

Subject: Theories

"Viable Offspring Derived from Fetal and Adult Mammalian Cells" (1997), by Ian Wilmut et al.

In the 1990s, Ian Wilmut, Jim McWhir, and Keith Campbell performed experiments while working at the Roslin Institute in Roslin, Scotland. Wilmut, McWhir, and Campbell collaborated with Angelica Schnieke and Alex J. Kind at PPL Therapeutics in Roslin, a company researching cloning and genetic manipulation for livestock. Their experiments resulted in several sheep being born in July 1996, one of which was a sheep named Dolly born 5 July 1996.

Format: Articles

Subject: Experiments

Viktor Hamburger (1900-2001)

Viktor Hamburger was an embryologist who focused on neural development. His scientific career stretched from the early 1920s as a student of Hans Spemann to the late 1980s at Washington University resolving the role of nerve growth factor in the life of neurons. Hamburger is noted for his systematic approach to science and a strict attention to detail. Throughout his life he maintained an interest in nature and the arts, believing both were important to his scientific work.

Format: Articles

Subject: People

John D. Gearhart

John D. Gearhart is a renowned American developmental geneticist best known for leading the Johns Hopkins University research team that first identified and isolated human pluripotent stem cells from human primordial germ cells, the precursors of fully differentiated germ cells. Born in Western Pennsylvania, Gearhart lived on the family farm located in the Allegheny Mountains for the first six years of his life.

Format: Articles

Subject: People

Sir D'Arcy Wentworth Thompson (1860-1948)

Known by many for his wide-reaching interests and keen thinking, D'Arcy Wentworth Thompson was one of Britain's leading scientific academics in the first few decades of the twentieth century. A prodigious author, Thompson published some 300 papers, books, and articles in the biological sciences, classics, oceanography, and mathematics. He was a famous lecturer and conversationalist-a true "scholar-naturalist," as his daughter wrote in her biography of her father.

Format: Articles

Subject: People

Franklin Paine Mall (1862-1917)

Franklin Paine Mall was born into a farming family in Belle Plaine, Iowa, on 28 September 1862. While he attended a local academy, an influential teacher fueled Mall's interest in science. From 1880-1883, he studied medicine at the University of Michigan, attaining his MD degree in 1883. William J. Mayo, who later became a famous surgeon and co-founder of the Mayo Clinic in Rochester, Minnesota, was a classmate of Mall's. Throughout his studies at Michigan, he was influenced by Corydon L. Ford, a professor of anatomy, Victor C.

Format: Articles

Subject: People

Elizabeth Dexter Hay (1927–2007)

Elizabeth Dexter Hay studied the cellular processes that affect development of embryos in the US during the mid-twentieth and early twenty-first centuries. In 1974, Hay showed that the extracellular matrix, a collection of structural molecules that surround cells, influences cell behavior. Cell growth, cell migration, and gene expression are influenced by the interaction between cells and their extracellular matrix.

Format: Articles

Subject: People

Josef Warkany (1902–1992)

Josef Warkany studied the environmental causes of birth defects in the United States in the twentieth century. Warkany was one of the first researchers to show that factors in the environment could cause birth defects, and he helped to develop guidelines for the field of teratology, the study of birth defects. Prior to Warkany’s work, scientists struggled to explain if or how environmental agents could cause birth defects. Warkany demonstrated that a deficiency or excess of vitamin A in maternal nutrition could cause birth defects.

Format: Articles

Subject: People