Search

Displaying 26 - 50 of 1172 items.

Karl Oskar Illmensee (1939–)

Karl Oskar Illmensee studied the cloning and reproduction of fruit flies, mice, and humans in the US and Europe during the twentieth and twenty-first centuries. Illmensee used nuclear transfer techniques (cloning) to create early mouse embryos from adult mouse cells, a technique biologists used in later decades to help explain how embryonic cells function during development. In the early 1980s, Illmensee faced accusations of fraud when others were unable to replicate the results of his experiments with cloned mouse embryos.

Format: Articles

Subject: People, People

Somatic Cell Nuclear Transfer in Mammals (1938-2013)

In the second half of the
twentieth century, scientists learned how to clone organisms in some
species of mammals. Scientists have applied somatic cell nuclear transfer to clone human and
mammalian embryos as a means to produce stem cells for laboratory
and medical use. Somatic cell nuclear transfer (SCNT) is a technology applied in cloning, stem cell
research and regenerative medicine. Somatic cells are cells that
have gone through the differentiation process and are not germ
cells. Somatic cells donate their nuclei, which scientists

Format: Articles

Subject: Theories, Technologies, Processes

"Proliferation, Differentiation and Degeneration in the Spinal Ganglia of the Chick Embryo under Normal and Experimental Conditions" (1949), by Viktor Hamburger and Rita Levi-Montalcini

In this paper Viktor Hamburger and Rita Levi-Montalcini collaborated to examine the effects of limb transplantation and explantation on neural development. In 1947 Hamburger invited Levi-Montalcini to his lab at Washington University in St. Louis to examine this question. Independently, each had previously arrived at opposing conclusions based on the same data.

Format: Articles

Subject: Experiments

Nicole Le Douarin and Charles Ordahl's Experiments on the Developmental Lineages of Somites

Through various studies developmental biologists have been able to determine that the muscles of the back, ribs, and limbs derive from somites. Somites are blocks of cells that contain distinct sections that diverge into specific types (axial or limb) of musculature and are an essential part of early vertebrate development. For many years the musculature of vertebrates was known to derive from the somites, but the exact developmental lineage of axial and limb muscle progenitor cells remained a mystery until Nicole Le Douarin and Charles P.

Format: Articles

Subject: Experiments

"Experiments in Transplanting Limbs and Their Bearing Upon the Problems of the Development of Nerves" (1907), by Ross Granville Harrison

In his 1907 paper, "Experiments in Transplanting Limbs and Their Bearing Upon the Problems of the Development of Nerves," in the Journal of Experimental Zoology that he edited, Ross Granville Harrison tested the development of nerves in transplanted tissue. He studied neural development by examining two competing theories. Victor Hensen proposed a syncytial theory as a way to explain neural development, suggesting that all the nerves of an embryo were connected directly by cytoplasm laid down early in development, and leaving no room for later modification.

Format: Articles

Subject: Experiments

Mesenchyme

Mesenchyme is a type of animal tissue comprised of loose cells embedded in a mesh of proteins and fluid, called the extracellular matrix. The loose, fluid nature of mesenchyme allows its cells to migrate easily and play a crucial role in the origin and development of morphological structures during the embryonic and fetal stages of animal life. Mesenchyme directly gives rise to most of the body's connective tissues, from bones and cartilage to the lymphatic and circulatory systems.

Format: Articles

Subject: Processes

"Sheep Cloned by Nuclear Transfer from a Cultured Cell Line" (1996), by Keith Campbell, Jim McWhir, William Ritchie, and Ian Wilmut

In 1995 and 1996, researchers at the Roslin Institute in Edinburgh, Scotland, cloned mammals for the first time. Keith Campbell, Jim McWhir, William Ritchie, and Ian Wilmut cloned two sheep, Megan and Morag, using sheep embryo cells. The experiments indicated how to reprogram nuclei from differentiated cells to produce live offspring, and that a single population of differentiated cells could produce multiple offspring. They reported their results in the article 'Sheep Cloned by Nuclear Transfer from a Cultured Cell Line' in March 1996.

Format: Articles

Subject: Experiments

Dissertation: Lessons from Embryos: Haeckel’s Embryo Drawings, Evolution, and Secondary Biology Textbooks

Haeckel believed that the development of an embryo revealed the adult stages of the organism’s ancestors. Haeckel represented this idea with drawings of vertebrate embryos at similar developmental stages. This is Haeckel’s embryo grid, the most common of all illustrations in biology textbooks. Yet, Haeckel’s embryo grids are much more complex than any textbook explanation. I examined 240 high school biology textbooks, from 1907 to 2010, for embryo grids.

Format: Essays and Theses

Subject: Publications, People

“A Two-Factor Hypothesis of Freezing Injury: Evidence from Chinese Hamster Tissue-Culture Cells” (1972), by Peter Mazur, Stanley Leibo, and Ernest Chu

In 1972, Peter Mazur, Stanley Leibo, and Ernest Chu published, “A Two-Factor Hypothesis of Freezing Injury: Evidence from Chinese Hamster Tissue-culture Cells,” hereafter, “A Two-Factor Hypothesis of Freezing Injury,” in the journal, Experimental Cell Research. In the article, the authors uncover that exposure to high salt concentrations and the formation of ice crystals within cells are two factors that can harm cells during cryopreservation. Cryopreservation is the freezing of cells to preserve them for storage, study, or later use.

Format: Articles

Subject: Publications, Theories

"Development, Plasticity and Evolution of Butterfly Eyespot Patterns" (1996), by Paul M. Brakefield et al.

Paul M. Brakefield and his research team in Leiden, the Netherlands, examined the development, plasticity, and evolution of butterfly eyespot patterns, and published their findings in Nature in 1996. Eyespots are eye-shaped color patterns that appear on the wings of some butterflies and birds as well as on the skin of some fish and reptiles. In butterflies, such as the peacock butterfly Aglais, the eyespots resemble the eyes of birds and help butterflies deter potential predators.

Format: Articles

Subject: Experiments

The First Successful Cloning of a Gaur (2000), by Advanced Cell Technology

Advanced Cell Technology (ACT), a stem cell biotechnology company in Worcester, Massachusetts, showed the potential for cloning to contribute to conservation efforts. In 2000 ACT researchers in the United States cloned a gaur (Bos gaurus), an Asian ox with a then declining wild population. The researchers used cryopreserved gaur skin cells combined with an embryo of a domestic cow (Bos taurus). A domestic cow also served as the surrogate for the developing gaur clone.

Format: Articles

Subject: Experiments

Germ Layers

A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through the process of gastrulation. During gastrulation, a hollow cluster of cells called a blastula reorganizes into two primary germ layers: an inner layer, called endoderm, and an outer layer, called ectoderm.

Format: Articles

Subject: Theories, Processes

"Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells" (2007), by Junying Yu et al.

On 2 December 2007, Science published a report on creating human induced pluripotent stem (iPS) cells from human somatic cells: "Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells." This report came from a team of Madison, Wisconsin scientists: Junying Yu, Maxim A. Vodyanik, Kim Smuga-Otto, Jessica Antosiewicz-Bourget, Jennifer L. Frane, Shulan Tian, Jeff Nie, Gudrun A. Jonsdottir, Victor Ruotti, Ron Stewart, Igor I. Slukvin, and James A. Thomson.

Format: Articles

Subject: Publications

Keith Henry Stockman Campbell (1954-2012)

Keith Henry Stockman Campbell studied embryo growth and cell differentiation during the twentieth and twenty-first centuries in the UK. In 1995, Campbell and his scientific team used cells grown and differentiated in a laboratory to clone sheep for the first time. They named these two sheep Megan and Morag. Campbell and his team also cloned a sheep from adult cells in 1996, which they named Dolly. Dolly was the first mammal cloned from specialized adult (somatic) cells with the technique of somatic cell nuclear transfer (SCNT).

Format: Articles

Subject: People

Dizhou Tong (1902-1979)

Dizhou Tong, also called Ti Chou Tung, studied marine animals and helped introduce and organize experimental embryology in China during the twentieth century. He introduced cellular nuclear transfer technology to the Chinese biological community, developed methods to clone organisms from many marine species, and investigated the role of cytoplasm in early development. Tong's administrative and scientific leadership in the fields of marine, cellular, and developmental biology contributed to China's experimental embryology research programs.

Format: Articles

Subject: People

"Generation of Induced Pluripotent Stem Cells Using Recombinant Proteins" (2009), by Hongyan Zhou et al.

Induced pluripotent stem cells (iPSCs) are studied carefully by scientists not just because they are a potential source of stem cells that circumvents ethical controversy involved with experimentation on human embryos, but also because of their unique potential to advance the field of regenerative medicine. First generated in a lab by Kazutoshi Takahashi and Shinya Yamanaka in 2006, iPSCs have the ability to differentiate into cells of all types.

Format: Articles

Subject: Publications

Interspecies SCNT-derived Humanesque Blastocysts

Since the 1950s, scientists have developed interspecies blastocysts in laboratory settings, but not until the 1990s did proposals emerge to engineer interspecies blastocysts that contained human genetic or cellular material. Even if these embryos were not permitted to mature to fetal stages, their ethical and political status became debated within nations attempting to use them for research.

Format: Articles

Subject: Theories

James Edgar Till (1931– )

James Edgar Till is a biophysicist known for establishing the existence of stem cells along with Ernest McCulloch in 1963. Stem cells are undifferentiated cells that can shift, or differentiate, into specialized types of cells and serve as a repair system in the body by dividing indefinitely to replenish other cells. Till’s work with stem cells in bone marrow, which produces the body’s blood cells, helped form the field of modern hematology, a medical discipline that focuses on diseases related to the blood.

Format: Articles

Subject: People, Experiments, Technologies

Advanced Cell Technology, Inc.

Advanced Cell Technology, Inc. (ACT) is a biotechnology company that uses stem cell technology to develop novel therapies in the field of regenerative medicine. Formed in 1994, ACT grew from a small agricultural cloning research facility located in Worcester, Massachusetts, into a multi-locational corporation involved in using both human embryonic stem cells (hESC) and human adult stem cells as well as animal cells for therapeutic innovations.

Format: Articles

Subject: Organizations, Reproduction

Gastrulation in Xenopus

The process of gastrulation allows for the formation of the germ layers in metazoan embryos, and is generally achieved through a series of complex and coordinated cellular movements. The process of gastrulation can be either diploblastic or triploblastic. In diploblastic organisms like cnidaria or ctenophora, only the endoderm and the ectoderm form; in triploblastic organisms (most other complex metazoans), triploblastic gastrulation produces all three germ layers.

Format: Articles

Subject: Processes

Julia Barlow Platt's Embryological Observations on Salamanders' Cartilage (1893)

In 1893, Julia Barlow Platt published her research on the origins of cartilage in the developing head of the common mudpuppy (Necturus maculosus) embryo. The mudpuppy is an aquatic salamander commonly used by embryologists because its large embryonic cells and nuclei are easy to see. Platt followed the paths of cells in developing mudpuppy embryos to see how embryonic cells migrated during the formation of the head. With her research, Platt challenged then current theories about germ layers, the types of cells in an early embryo that develop into adult cells.

Format: Articles

Subject: Experiments, Theories, Processes

Stem Cells

According to the US National Institutes of Health (NIH), the standard American source on stem cell research, three characteristics of stem cells differentiate them from other cell types: (1) they are unspecialized cells that (2) divide for long periods, renewing themselves and (3) can give rise to specialized cells, such as muscle and skin cells, under particular physiological and experimental conditions. When allowed to grow in particular environments, stem cells divide many times. This ability to proliferate can yield millions of stem cells over several months.

Format: Articles

Subject: Processes

"Contributions to the Development of the Embryo. On the Artificial Production of One of the First Two Blastomeres, and the Later Development (Postgeneration) of the Missing Half of the Body" (1888), by Wilhelm Roux

Wilhelm Roux was an influential figure in the early history of experimental embryology. Although he originally studied medicine, he was invited to be a Privatdozentur, or unsalaried lecturer, at the Anatomical Institute in Breslau (Wroclaw), Poland, in 1879. He spent the next ten years at this institute, working his way from Dozent to associate professor and finally, in 1889, to director for his own institute, Institut für Entwicklungsgeschichte, or Institute for Developmental History and Mechanics.

Format: Articles

Subject: Experiments

"The Limited In Vitro Lifetime of Human Diploid Cell Strains" (1964), by Leonard Hayflick

Leonard Hayflick in the US during the early 1960s showed that normal populations of embryonic cells divide a finite number of times. He published his results as 'The Limited In Vitro Lifetime of Human Diploid Cell Strains' in 1964. Hayflick performed the experiment with WI-38 fetal lung cells, named after the Wistar Institute, in Philadelphia, Pennsylvania, where Hayflick worked. Frank MacFarlane Burnet, later called the limit in capacity for cellular division the Hayflick Limit in 1974.

Format: Articles

Subject: Experiments

Dissertation: Degeneration in Miniature: History of Cell Death and Aging Research in the Twentieth Century

Once perceived as an unimportant occurrence in living organisms, cell degeneration was reconfigured as an important biological phenomenon in development, aging, health, and diseases in the twentieth century. This dissertation tells a twentieth-century history of scientific investigations on cell degeneration, including cell death and aging.

Format: Essays and Theses

Subject: Processes, Organisms