Search

Displaying 26 - 50 of 91 items.

The Role of the Notch signaling pathway in Somitogenesis

Among other functions, the Notch signaling pathway contributes to the development of somites in animals. It involves a cell signaling mechanism with a wide range of functions, including cellular differentiation, and the formation of the embryonic structures (embryogenesis). All multicellular animals use Notch signaling, which is involved in the development, maintenance, and regeneration of a range of tissues. The Notch signaling pathways spans two cells, and consists of receptor proteins, which cross one cell's membrane and interacts with proteins on adjacent cells, called ligands.

Format: Articles

Subject: Theories, Processes

Spermism

Spermism was one of two models of preformationism, a theory of embryo generation prevalent in the late seventeenth through the end of the eighteenth century. Spermist preformationism was the belief that offspring develop from a tiny fully-formed fetus contained within the head of a sperm cell. This model developed slightly later than the opposing ovist model because sperm cells were not seen under the microscope until about 1677.

Format: Articles

Subject: Theories

Fetus in Fetu

Fetus in fetu is a rare variety of parasitic twins , where the developmentally abnormal parasitic twin is completely encapsulated within the torso of the otherwise normally developed host twin. In the late eighteenth century, German anatomist Johann Friedrich Meckel was the first to described fetus in fetu, which translates to “fetus within fetus.” Fetus in fetu is thought to result from the unequal division of the totipotent inner cell mass , the mass of cells that is the ancestral precursor to all cells in the body.

Subject: Theories, Disorders, Reproduction

Essay: The Cuvier-Geoffroy Debate

In 1830, a dispute erupted in the halls of lÕAcad mie des Sciences in Paris between the two most prominent anatomists of the nineteenth century. Georges Cuvier and tienne Geoffroy Saint-Hilaire, once friends and colleagues at the Paris Museum, became arch rivals after this historical episode. Like many important disputes in the history of science, this debate echoes several points of contrasts between the two thinkers.

Format: Essays and Theses

Subject: Theories

Neurospora crassa Life Cycle

This diagram shows the life cycle of Neurospora crassa, a mold that grows on bread. N. crassa can reproduce through an asexual cycle or a sexual cycle. The asexual cycle (colored as a purple circle), begins in this figure with (1a) vegetative mycelium, which are strands of mature fungus. Some of the strands form bulbs (2a) in a process called conidiation. From those bulbs develop the conidia, which are spores. Next, (3a) a single conidium separates from its strand and elongates until it forms mycelium.

Format: Graphics

Subject: Organisms, Processes, Theories

Reassessment of Carrel's Immortal Tissue Culture Experiments

In the 1910s, Alexis Carrel, a French surgeon and biologist, concluded that cells are intrinsically immortal. His claim was based on chick-heart tissue cultures in his laboratory that seemed to be able to proliferate forever. Carrel's ideas about cellular immortality convinced his many contemporaries that cells could be maintained indefinitely. In the 1960s, however, Carrel's thesis about cell immortality was put into question by the discovery that human diploid cells can only proliferate for a finite period.

Format: Articles

Subject: Processes, Theories

Epigenetic Landscape

The epigenetic landscape is a concept representing embryonic development. It was proposed by Conrad Hal Waddington to illustrate the various developmental pathways a cell might take toward differentiation. The epigenetic landscape integrates the connected concepts of competence, induction, and regulative abilities of the genes into a single model designed to explain cellular differentiation, a long standing problem in embryology.

Format: Articles

Subject: Theories

Molecular Epigenetics and Development: Histone Conformations, DNA Methylation and Genomic Imprinting

Introduced by Conrad Hal Waddington in 1942, the concept of epigenetics gave scientists a new paradigm of thought concerning embryonic development, and since then has been widely applied, for instance to inheritable diseases, molecular technologies, and indeed the human genome as a whole. A genome contains an embedded intricate coding template that provides a means of genetic expression from the initial steps of embryonic development until the death of the organism. Within the genome there are two prominent components: coding (exons) and non-coding (introns) sequences.

Format: Articles

Subject: Theories

Mitochondrial DNA (mtDNA)

Mitochondrial DNA (mtDNA) is located outside the nucleus in the liquid portion of the cell (cytoplasm) inside cellular organelles called Mitochondria. Mitochondria are located in all complex or eukaryotic cells, including plant, animal, fungi, and single celled protists, which contain their own mtDNA genome. In animals with a backbone, or vertebrates, mtDNA is a double stranded, circular molecule that forms a circular genome, which ranges in size from sixteen to eighteen kilo-base pairs, depending on species. Each mitochondrion in a cell can have multiple copies of the mtDNA genome.

Format: Articles

Subject: Theories

Ovism

Ovism was one of two models of preformationism, a theory of generation prevalent in the late seventeenth through the end of the eighteenth century. Contrary to the competing theory of epigenesis (gradual emergence of form), preformationism held that the unborn offspring existed fully formed in the eggs or sperm of its parents prior to conception. The ovist model held that the maternal egg was the location of this preformed embryo, while the other preformationism model known as spermism preferred the paternal germ cell, as the name implies.

Format: Articles

Subject: Theories

Fruit Fly Life Cycle

Fruit flies of the species Drosophila melanogaster develop from eggs to adults in eight to ten days at 25 degrees Celsius. They develop through four primary stages: egg, larva, pupa, and adult. When in the wild, female flies lay their fertilized eggs in rotting fruit or other decomposing material that can serve as food for the larvae. In the lab, fruit flies lay their fertilized eggs in a mixture of agar, molasses, cornmeal, and yeast. After roughly a day, each egg hatches into a larva.

Format: Graphics

Subject: Theories, Processes, Organisms

Lynn Petra Alexander Sagan Margulis (1938-2011)

Lynn Petra Alexander Sagan Margulis was an American biologist, whose work in the mid-twentieth century focused on cells living together in a mutually advantageous relationship, studied cells and mitochondria in the US during the second half of the twentieth century. She developed a theory for the origin of eukaryotic cells, that proposed two kinds of structures found in eukaryotic cells mitochondria in animals, and plastids in plantsÑwere once free-living bacteria that lived harmoniously and in close proximity to larger cells, a scenario called symbiosis.

Format: Articles

Subject: People, Theories

The Y-Chromosome in Animals

The Y-chromosome is one of a pair of chromosomes that determine the genetic sex of individuals in mammals, some insects, and some plants. In the nineteenth and twentieth centuries, the development of new microscopic and molecular techniques, including DNA sequencing, enabled scientists to confirm the hypothesis that chromosomes determine the sex of developing organisms. In an adult organism, the genes on the Y-chromosome help produce the male gamete, the sperm cell. Beginning in the 1980s, many studies of human populations used the Y-chromosome gene sequences to trace paternal lineages.

Format: Articles

Subject: Reproduction, Theories

The Formation of Reticular Theory

In the nineteenth century, reticular theory aimed to describe the properties of neurons, the specialized cells which make up the nervous system, but was later disconfirmed by evidence. Reticular theory stated that the nervous system was composed of a continuous network of specialized cells without gaps (synapses), and was first proposed by researcher Joseph von Gerlach in Germany in 1871.

Format: Articles

Subject: Theories

The Hayflick Limit

The Hayflick Limit is a concept that helps to explain the
mechanisms behind cellular aging. The concept states that a normal human
cell can only replicate and divide forty to sixty times before it
cannot divide anymore, and will break down by programmed cell death
or apoptosis. The concept of the Hayflick Limit revised Alexis
Carrel's earlier theory, which stated that cells can replicate
themselves infinitely. Leonard Hayflick developed the concept while
at the Wistar Institute in Philadelphia,

Format: Articles

Subject: Theories

The Development of the Neural Crest and the Migration of Neural Crest Cells (NCCs) in the Embryos of Various Vertebrates

This diagram shows how NCCs migrate differently in rats, birds and amphibians. The arrows represent both chronology of NCCs migration and the differential paths that NCCs follow in different classes of animals. The solid black portion of each illustration represents the neural crest, and the large black dots in (c) and in (f) represent the neural crest cells. The speckled sections that at first form a basin in (a) and then close to form a tube in (f) represent the neural ectoderm. The solid white portions represent the epidermal ectoderm.

Format: Graphics

Subject: Theories, Processes

Mitochondria

All cells that have a nucleus, including plant, animal, fungal cells, and most single-celled protists, also have mitochondria. Mitochondria are particles called organelles found outside the nucleus in a cell's cytoplasm. The main function of mitochondria is to supply energy to the cell, and therefore to the organism. The theory for how mitochondria evolved, proposed by Lynn Margulis in the twentieth century, is that they were once free-living organisms.

Format: Articles

Subject: Organisms, Theories

Syncytial Theory

The syncytial theory of neural development was proposed by Victor Hensen in 1864 to explain the growth and differentiation of the nervous system. This theory has since been discredited, although it held a significant following at the turn of the twentieth century. Neural development was well studied but poorly understood, so Hensen proposed a simple model of development. The syncytial theory predicted that the nervous system was composed of many neurons with shared cytoplasm.

Format: Articles

Subject: Theories

Apoptosis in Embryonic Development

Apoptosis, or programmed cell death, is a mechanism in embryonic development that occurs naturally in organisms. Apoptosis is a different process from cell necrosis, which is uncontrolled cell death usually after infection or specific trauma. As cells rapidly proliferate during development, some of them undergo apoptosis, which is necessary for many stages in development, including neural development, reduction in egg cells (oocytes) at birth, as well as the shaping of fingers and vestigial organs in humans and other animals. Sydney Brenner, H. Robert Horvitz, and John E.

Format: Articles

Subject: Theories

Study of Fossilized Massospondylus Dinosaur Embryos from South Africa (1978-2012)

In 1978, James Kitching discovered two dinosaur embryos in a road-cut talus at Roodraai (Red Bend) in Golden Gate Highlands National Park, South Africa. Kitching assigned the fossilized embryos to the species of long necked herbivores Massospondylus carinatus (longer vertebra) from the Early Jurassic period, between 200 and 183 million years ago. The embryos were partially visible but surrounded by eggshell and rock, called matrix. Kitching said that the eggs were too delicate to remove from the matrix without damage.

Format: Articles

Subject: Theories, Organisms

The Neuron Doctrine (1860-1895)

The neuron doctrine is a concept formed during the turn of the twentieth century that describes the properties of neurons, the specialized cells that compose the nervous system. The neuron doctrine was one of two major theories on the composition of the nervous system at the time. Advocates of the neuron doctrine claimed that the nervous system was composed of discrete cellular units. Proponents of the alternative reticular theory, on the other hand, argued that the entire nervous system was a continuous network of cells, without gaps or synapses between the cells.

Format: Articles

Subject: Theories

Edward Drinker Cope's Law of Acceleration of Growth

The Law of Acceleration of Growth is a theory proposed by Edward Drinker Cope in the US during the nineteenth century. Cope developed it in an attempt to explain the evolution of genera by appealing to changes in the developmental timelines of organisms. Cope proposed this law as an additional theory to natural selection.

Format: Articles

Subject: Theories

Paternal Sperm Telomere Elongation and Its Impact on Offspring Fitness

Telomeres are structures at the ends of DNA strands that get longer in the DNA of sperm cells as males age. That phenomenon is different for most other types of cells, for which telomeres get shorter as organisms age. In 1992, scientists showed that telomere length (TL) in sperm increases with age in contrast to most cell of most other types. Telomeres are the protective caps at the end of DNA strands that preserve chromosomal integrity and contribute to DNA length and stability.

Format: Articles

Subject: Theories

Carnegie Stages

Historically the exact age of human embryo specimens has long perplexed embryologists. With the menstrual history of the mother often unknown or not exact, and the premenstrual and postmenstrual phases varying considerably among women, age sometimes came down to a best guess based on the weight and size of the embryo. Wilhelm His was one of the first to write comparative descriptions of human embryos in the late 1800s. Soon afterward, Franklin P. Mall, the first director of the Carnegie Institution of Washington's (CIW) Department of Embryology, expanded upon His' work.

Format: Articles

Subject: Theories

"Mitochondrial DNA and Human Evolution" (1987), by Rebecca Louise Cann, Mark Stoneking, and Allan Charles Wilson

In 1987 Rebecca Louise Cann, Mark Stoneking, and Allan Charles Wilson published Mitochondrial DNA and Human Evolution in the journal Nature. The authors compared mitochondrial DNA from different human populations worldwide, and from those comparisons they argued that all human populations had a common ancestor in Africa around 200,000 years ago. Mitochondria DNA (mtDNA) is a small circular genome found in the subcellular organelles, called mitochondria.

Format: Articles

Subject: Publications, Theories