Search

Displaying 26 - 50 of 82 items.

Tissue Engineering

Tissue engineering is a field of regenerative medicine that integrates the knowledge of scientists, physicians, and engineers into the construction or reconstruction of human tissue. Practitioners of tissue engineering seek to repair, replace, maintain, and enhance the abilities of a specific tissue or organ by means of living cells. More often than not stem cells are the form of living cells used in this technology. Tissue engineering is one of the disciplines involved in translating knowledge of developmental biology into the clinical setting.

Format: Articles

Subject: Processes

Mesoderm

Mesoderm is one of the three germ layers, groups of cells that interact early during the embryonic life of animals and from which organs and tissues form. As organs form, a process called organogenesis, mesoderm interacts with endoderm and ectoderm to give rise to the digestive tract, the heart and skeletal muscles, red blood cells, and the tubules of the kidneys, as well as a type of connective tissue called mesenchyme. All animals that have only one plane of symmetry through the body, called bilateral symmetry, form three germ layers.

Format: Articles

Subject: Processes

Embryonic Differentiation in Animals

Embryonic differentiation is the process of development during which embryonic cells specialize and diverse tissue structures arise. Animals are made up of many different cell types, each with specific functions in the body. However, during early embryonic development, the embryo does not yet possess these varied cells; this is where embryonic differentiation comes into play. The differentiation of cells during embryogenesis is the key to cell, tissue, organ, and organism identity.

Format: Articles

Subject: Processes

Gastrulation in Gallus gallus (Domestic Chicken)

Gastrulation is an early stage in embryo development in which the blastula reorganizes into three germ layers: the ectoderm, the mesoderm, and the endoderm. Gastrulation occurs after cleavage but before neurulation and organogenesis. Ernst Haeckel coined the term; gaster, meaning stomach in Latin, is the root for gastrulation, as the gut is one of the most unique creations of the gastrula.

Format: Articles

Subject: Processes

Fetal Programming

Fetal programming, or prenatal programming, is a concept that suggests certain events occurring during critical points of pregnancy may cause permanent effects on the fetus and the infant long after birth. The concept of fetal programming stemmed from the fetal origins hypothesis, also known as Barker’s hypothesis, that David Barker proposed in 1995 at the University of Southampton in Southampton, England.

Format: Articles

Subject: Processes, Theories, Reproduction

The Role of the Notch signaling pathway in Somitogenesis

Among other functions, the Notch signaling pathway contributes to the development of somites in animals. It involves a cell signaling mechanism with a wide range of functions, including cellular differentiation, and the formation of the embryonic structures (embryogenesis). All multicellular animals use Notch signaling, which is involved in the development, maintenance, and regeneration of a range of tissues. The Notch signaling pathways spans two cells, and consists of receptor proteins, which cross one cell's membrane and interacts with proteins on adjacent cells, called ligands.

Format: Articles

Subject: Theories, Processes

Teratomas

Teratomas are embryonal tumors that normally arise from germ cells and are typically benign. They are defined as being composed either of tissues that are foreign to the area in which they form, or of tissues that derive from all three of the germ layers. Malignant teratomas are known as teratocarcinomas; these cancerous growths have played a pivotal role in the discovery of stem cells. "Teratoma" is Greek for "monstrous tumor"; these tumors were so named because they sometimes contain hair, teeth, bone, neurons, and even eyes.

Format: Articles

Subject: Processes, Disorders

The Carapacial Ridge of Turtles

Two main elements characterize the skeletal morphology of turtles: the carapace and the plastron. For a turtle, the carapacial ridge begins in the embryo as a bulge posterior to the limbs but on both sides of the body. Such outgrowths are the first indication of shell development in turtle embryos. While the exact mechanisms underpinning the formation of the carapacial ridge are still not entirely known, some biologists argue that understanding these embryonic mechanisms is pivotal to explaining both the development of turtles and their evolutionary history.

Format: Articles

Subject: Processes

Reassessment of Carrel's Immortal Tissue Culture Experiments

In the 1910s, Alexis Carrel, a French surgeon and biologist, concluded that cells are intrinsically immortal. His claim was based on chick-heart tissue cultures in his laboratory that seemed to be able to proliferate forever. Carrel's ideas about cellular immortality convinced his many contemporaries that cells could be maintained indefinitely. In the 1960s, however, Carrel's thesis about cell immortality was put into question by the discovery that human diploid cells can only proliferate for a finite period.

Format: Articles

Subject: Processes, Theories

Hedgehog Signaling Pathway

The hedgehog signaling pathway is a mechanism that directs the development of embryonic cells in animals, from invertebrates to vertebrates. The hedgehog signaling pathway is a system of genes and gene products, mostly proteins, that convert one kind of signal into another, called transduction. In 1980, Christiane Nusslein-Volhard and Eric F. Wieschaus, at the European Molecular Biology Laboratory in Heidelberg, Germany, identified several fruit fly (Drosophila melanogaster) genes.

Format: Articles

Subject: Processes

Chemical Induction

Research in chemical induction seeks to identify the compound or compounds responsible for differentiation in a developing embryo. Soren Lovtrup compared the search for these compounds to the search for the philosopher's stone. It was based on the assumption that the differentiating agents have to be chemical substances either within cells or in the extracellular matrix.

Format: Articles

Subject: Processes

Morphogenesis

The term morphogenesis generally refers to the processes by which order is created in the developing organism. This order is achieved as differentiated cells carefully organize into tissues, organs, organ systems, and ultimately the organism as a whole. Questions centered on morphogenesis have aimed to uncover the mechanisms responsible for this organization, and developmental biology textbooks have identified morphogenesis as one of the main challenges in the field. The concept of morphogenesis is intertwined with those of differentiation, growth, and reproduction.

Format: Articles

Subject: Processes

Zidovudine or Azidothymidine (AZT)

In 1964, Jerome Horwitz synthesized the drug zidovudine, commonly abbreviated ZDV, otherwise known as azidothymidine, or AZT, at Wayne State University School of Medicine in Detroit, Michigan. Horwitz and his colleagues originally developed zidovudine to treat cancers caused by retroviruses. In 1983, Nobel Prize in Physiology or Medicine recipients Françoise Barré-Sinoussi and Luc Montagnier discovered a new retrovirus, the human immunodeficiency virus, or HIV, at the Pasteur Institute in Paris, France.

Format: Articles

Subject: Processes

Hensen's Node

A node, or primitive knot, is an enlarged group of cells located in the anterior portion of the primitive streak in a developing gastrula. The node is the site where gastrulation, the formation of the three germ layers, first begins. The node determines and patterns the anterior-posterior axis of the embryo by directing the development of the chordamesoderm. The chordamesoderm is a specific type of mesoderm that will differentiate into the notochord, somites, and neural tube. Those structures will later form the vertebral column.

Format: Articles

Subject: Processes

Epidermal Growth Factor

Epidermal growth factor is a signaling molecule that stimulates the growth of epidermal tissues during development and throughout life. Stanley Cohen discovered epidermal growth factor (EGF) during studies of nerve growth factor as a side effect of other experiments. EGF stimulates tissue growth by initiating a variety of cellular mechanisms. This work led to the 1986 Nobel Prize in Physiology or Medicine awarded to Cohen and Rita Levi-Montalcini.

Format: Articles

Subject: Processes

The Process of Implantation of Embryos in Primates

Implantation is a process in which a developing embryo, moving as a blastocyst through a uterus, makes contact with the uterine wall and remains attached to it until birth. The lining of the uterus (endometrium) prepares for the developing blastocyst to attach to it via many internal changes. Without these changes implantation will not occur, and the embryo sloughs off during menstruation. Such implantation is unique to mammals, but not all mammals exhibit it.

Format: Articles

Subject: Processes

The Effects of Thalidomide on Embryonic Development

Embryogenesis is an intricate process that can easily be disrupted by means of teratogenic agents. Some of these agents target the embryonic period's "window of susceptibility," three to eight weeks after a pregnant woman's last menstruation, when the highest degree of sensitivity to embryonic cell differentiation and organ formation occurs. The embryonic period or critical period is when most organ systems form, whereas the fetal period, week eight to birth, involves the growth and modeling of the organ systems.

Format: Articles

Subject: Processes, Disorders

Sex-determining Region Y in Mammals

The Sex-determining Region Y (Sry in mammals but SRY in humans) is a gene found on Y chromosomes that leads to the development of male phenotypes, such as testes. The Sry gene, located on the short branch of the Y chromosome, initiates male embryonic development in the XY sex determination system. The Sry gene follows the central dogma of molecular biology; the DNA encoding the gene is transcribed into messenger RNA, which then produces a single Sry protein.

Format: Articles

Subject: Processes

Homeobox Genes and the Homeobox

Homeobox genes are a cluster of regulatory genes that are spatially and temporally expressed during early embryological development. They are interesting from both a developmental and evolutionary perspective since their sequences are highly conserved and shared across an enormously wide array of living taxa.

Format: Articles

Subject: Processes

The French Flag Model

The French flag model represents how embryonic cells receive and respond to genetic information and subsequently differentiate into patterns. Created by Lewis Wolpert in the late 1960s, the model uses the French tricolor flag as visual representation to explain how embryonic cells can interpret genetic code to create the same pattern even when certain pieces of the embryo are removed. Wolpert's model has provided crucial theoretical framework for investigating universal mechanisms of pattern formation during development.

Format: Articles

Subject: Processes, Theories

Nerve Growth Factor

Nerve growth factor (NGF) is a signaling protein and growth factor implicated in a wide range of development and maintenance functions. NGF was discovered through a series of experiments in the 1950s on the development of the chick nervous system. Since its discovery, NGF has been found to act in a variety of tissues throughout development and adulthood. It has been implicated in immune function, stress response, nerve maintenance, and in neurodegenerative diseases.

Format: Articles

Subject: Processes

Meiosis in Humans

Meiosis, the process by which sexually-reproducing organisms generate gametes (sex cells), is an essential precondition for the normal formation of the embryo. As sexually reproducing, diploid, multicellular eukaryotes, humans rely on meiosis to serve a number of important functions, including the promotion of genetic diversity and the creation of proper conditions for reproductive success.

Format: Articles

Subject: Processes, Reproduction

Inducing Fertilization and Development in Sand Dollars

Sand dollars are common marine invertebrates in the phylum Echinodermata and share the same class (Echinoidea) as sea urchins. They have served as model laboratory organisms for such embryologists as Frank Rattray Lillie and Ernest Everett Just. Both Lillie and Just used Echinarachnius parma for their studies of egg cell membranes and embryo development at the Marine Biological Laboratory (MBL) at Woods Hole, Massachusetts, in the early 1900s.

Format: Articles

Subject: Processes

Hamburger-Hamilton Staging Series (1951)

In 1951 Viktor Hamburger and Howard Hamilton created an embryonic staging series from a combination of photographs and drawings from other researchers. The Hamburger-Hamilton stages are a sequence of images depicting 46 chronological stages in chick development. The images begin with a fertilized egg and end with a fully developed chick. The Hamburger-Hamilton staging series was produced in order to replace a previous chick staging series created in 1900. The earlier attempt lacked specific details and staged the chick embryo by using only morphological characteristics.

Format: Articles

Subject: Processes

Biological Clocks and the Formation of Human Tooth Enamel

Tooth enamel contains relics of its formation process, in the form of microstructures, which indicate the incremental way in which it forms. These microstructures, called cross-striations and striae of Retzius, develop as enamel-forming cells called ameloblasts, whcih cyclically deposit enamel on developing teeth in accordance with two different biological clocks. Cross-striations result from a twenty-four hour cycle, called a Circadian rhythm, in the enamel deposition process, while striae of Retzius have a longer periodicity.

Format: Articles

Subject: Processes