Search

Displaying 226 - 250 of 2266 items.

John von Neumann's Cellular Automata

Cellular automata (CA) are mathematical models used to simulate complex systems or processes. In several fields, including biology, physics, and chemistry, CA are employed to analyze phenomena such as the growth of plants, DNA evolution, and embryogenesis. In the 1940s John von Neumann formalized the idea of cellular automata in order to create a theoretical model for a self-reproducing machine. Von Neumann's work was motivated by his attempt to understand biological evolution and self-reproduction.

Format: Articles

Subject: Theories

"A molecular wound response program associated with regeneration initiation in planarians" (2012), by Danielle Wenemoser et al.

In 2012, a team of scientists across the US conducted an experiment to find the mechanism that allowed a group of flatworms, planarians, to regenerate any body part. The group included Danielle Wenemoser, Sylvain Lapan, Alex Wilkinson, George Bell, and Peter Reddien. They aimed to identify genes that are expressed by planarians in response to wounds that initiated a regenerative mechanism. The researchers determined several genes as important for tissue regeneration.

Format: Articles

Subject: Experiments

Peter Mazur (1928–2015)

Peter Mazur was a researcher in the US who developed new ways of preserving biological material by freezing it, a process called cryopreservation. If done correctly, cryopreservation enables scientists to store or study biological material for an extended period of time. If done incorrectly, cryopreservation can easily harm or destroy biological material. Mazur worked to find the best ways to cryopreserve different cells, embryos, and organs in order to minimize the damage caused by freezing.

Format: Articles

Subject: People

Alec Jeffreys’s Experiments to Identify Individuals by Their Beta-globin Genes (1977-1979)

In a series of experiments in the late 1970s, Alec J. Jeffreys in the UK and Richard A. Flavell in the Netherlands developed a technique to detect variations in the DNA of different individuals. They compared fragments of DNA from individuals’ beta-globin genes, which produce a protein in hemoglobin. Previously, to identify biological material, scientists focused on proteins rather than on genes. But evidence about proteins enabled scientists only to exclude, but not to identify, individuals as the sources of the biological samples.

Format: Articles

Subject: Experiments

Thomas Hunt Morgan (1866-1945)

Although best known for his work with the fruit fly, for which he earned a Nobel Prize and the title "The Father of Genetics," Thomas Hunt Morgan's contributions to biology reach far beyond genetics. His research explored questions in embryology, regeneration, evolution, and heredity, using a variety of approaches.

Format: Articles

Subject: People

Alan Mathison Turing (1912-1954)

Alan Mathison Turing was a British mathematician and computer scientist who lived in the early twentieth century. Among important contributions in the field of mathematics, computer science, and philosophy, he developed a mathematical model of morphogenesis. This model describing biological growth became fundamental for research on the process of embryo development.

Format: Articles

Subject: People

Lazzaro Spallanzani (1729-1799)

Lazzaro Spallanzani's imaginative application of experimental methods, mastery of microscopy, and wide interests led him to significant contributions in natural history, experimental biology, and physiology. His detailed and thoughtful observations illuminated a broad spectrum of problems ranging from regeneration to the genesis of thunderclouds.

Format: Articles

Subject: People