Search

Displaying 26 - 50 of 71 items.

Nerve Growth Factor

Nerve growth factor (NGF) is a signaling protein and growth factor implicated in a wide range of development and maintenance functions. NGF was discovered through a series of experiments in the 1950s on the development of the chick nervous system. Since its discovery, NGF has been found to act in a variety of tissues throughout development and adulthood. It has been implicated in immune function, stress response, nerve maintenance, and in neurodegenerative diseases.

Format: Articles

Subject: Processes

Hedgehog Signaling Pathway

The hedgehog signaling pathway is a mechanism that directs the development of embryonic cells in animals, from invertebrates to vertebrates. The hedgehog signaling pathway is a system of genes and gene products, mostly proteins, that convert one kind of signal into another, called transduction. In 1980, Christiane Nusslein-Volhard and Eric F. Wieschaus, at the European Molecular Biology Laboratory in Heidelberg, Germany, identified several fruit fly (Drosophila melanogaster) genes.

Format: Articles

Subject: Processes

The Role of the Notch Signaling Pathway in Myogenesis

Among other functions, the Notch signaling pathway forestalls the process of myogenesis in animals. The Notch signaling pathway is a pathway in animals by which two adjacent cells within an organism use a protein named Notch to mechanically interact with each other. Myogenesis is the formation of muscle that occurs throughout an animal's development, from embryo to the end of life. The cellular precursors of skeletal muscle originate in somites that form along the dorsal side of the organism.

Format: Articles

Subject: Theories, Processes

Golgi Staining Technique

The Golgi staining technique, also called the black reaction after the stain's color, was developed in the 1870s and 1880s in Italy to make brain cells (neurons) visible under the microscope. Camillo Golgi developed the technique while working with nervous tissue, which required Golgi to examine cell structure under the microscope. Golgi improved upon existing methods of staining, enabling scientists to view entire neurons for the first time and changing the way people discussed the development and composition of the brain's cells.

Format: Articles

Subject: Technologies, Processes

Sex-determining Region Y in Mammals

The Sex-determining Region Y (Sry in mammals but SRY in humans) is a gene found on Y chromosomes that leads to the development of male phenotypes, such as testes. The Sry gene, located on the short branch of the Y chromosome, initiates male embryonic development in the XY sex determination system. The Sry gene follows the central dogma of molecular biology; the DNA encoding the gene is transcribed into messenger RNA, which then produces a single Sry protein.

Format: Articles

Subject: Processes

Germ Layers

A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through the process of gastrulation. During gastrulation, a hollow cluster of cells called a blastula reorganizes into two primary germ layers: an inner layer, called endoderm, and an outer layer, called ectoderm.

Format: Articles

Subject: Theories, Processes

Mesoderm

Mesoderm is one of the three germ layers, groups of cells that interact early during the embryonic life of animals and from which organs and tissues form. As organs form, a process called organogenesis, mesoderm interacts with endoderm and ectoderm to give rise to the digestive tract, the heart and skeletal muscles, red blood cells, and the tubules of the kidneys, as well as a type of connective tissue called mesenchyme. All animals that have only one plane of symmetry through the body, called bilateral symmetry, form three germ layers.

Format: Articles

Subject: Processes

Hamburger-Hamilton Staging Series (1951)

In 1951 Viktor Hamburger and Howard Hamilton created an embryonic staging series from a combination of photographs and drawings from other researchers. The Hamburger-Hamilton stages are a sequence of images depicting 46 chronological stages in chick development. The images begin with a fertilized egg and end with a fully developed chick. The Hamburger-Hamilton staging series was produced in order to replace a previous chick staging series created in 1900. The earlier attempt lacked specific details and staged the chick embryo by using only morphological characteristics.

Format: Articles

Subject: Processes

Embryonic Differentiation in Animals

Embryonic differentiation is the process of development during which embryonic cells specialize and diverse tissue structures arise. Animals are made up of many different cell types, each with specific functions in the body. However, during early embryonic development, the embryo does not yet possess these varied cells; this is where embryonic differentiation comes into play. The differentiation of cells during embryogenesis is the key to cell, tissue, organ, and organism identity.

Format: Articles

Subject: Processes

Nuclear Transplantation

Nuclear transplantation is a method in which the nucleus of a donor cell is relocated to a target cell that has had its nucleus removed (enucleated). Nuclear transplantation has allowed experimental embryologists to manipulate the development of an organism and to study the potential of the nucleus to direct development. Nuclear transplantation, as it was first called, was later referred to as somatic nuclear transfer or cloning.

Format: Articles

Subject: Processes

Abortion

Abortion is the removal of the embryo or fetus from the womb, before birth can occur-either naturally or by induced labor. Prenatal development occurs in three stages: the zygote, or fertilized egg; the embryo, from post-conception to eight weeks; and the fetus, from eight weeks after conception until the baby is born. After abortion, the infant does not and cannot live. Spontaneous abortion is the loss of the infant naturally or accidentally, without the will of the mother. It is more commonly referred to as miscarriage.

Format: Articles

Subject: Processes, Ethics, Reproduction

Some of the Cells that Arise from Animal Gastrulas with Three Germ Layers

From a developing embryos three primary germ layers, ectoderm (green), mesoderm (pink) and endoderm (yellow), a variety of differentiated cell types and organ systems arise, far more than are shown here. The three primary germ layers are shown during the gastrula stage because they become distinct at the gastrula stage. The germ cells (blue) are pre- cursors to sperm and egg cells, and they are set aside early in development, and are thought to arise from the ectoderm.

Format: Graphics

Subject: Theories, Processes

Endoderm

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of cells transforms into a two-layered embryo made of an inner layer of endoderm and an outer layer of ectoderm. In more complex organisms, like vertebrates, these two primary germ layers interact to give rise to a third germ layer, called mesoderm.

Format: Articles

Subject: Processes

Hensen's Node

A node, or primitive knot, is an enlarged group of cells located in the anterior portion of the primitive streak in a developing gastrula. The node is the site where gastrulation, the formation of the three germ layers, first begins. The node determines and patterns the anterior-posterior axis of the embryo by directing the development of the chordamesoderm. The chordamesoderm is a specific type of mesoderm that will differentiate into the notochord, somites, and neural tube. Those structures will later form the vertebral column.

Format: Articles

Subject: Processes

Gastrulation in Gallus gallus (Domestic Chicken)

Gastrulation is an early stage in embryo development in which the blastula reorganizes into three germ layers: the ectoderm, the mesoderm, and the endoderm. Gastrulation occurs after cleavage but before neurulation and organogenesis. Ernst Haeckel coined the term; gaster, meaning stomach in Latin, is the root for gastrulation, as the gut is one of the most unique creations of the gastrula.

Format: Articles

Subject: Processes

Homeobox Genes and the Homeobox

Homeobox genes are a cluster of regulatory genes that are spatially and temporally expressed during early embryological development. They are interesting from both a developmental and evolutionary perspective since their sequences are highly conserved and shared across an enormously wide array of living taxa.

Format: Articles

Subject: Processes

Morphogenesis

The term morphogenesis generally refers to the processes by which order is created in the developing organism. This order is achieved as differentiated cells carefully organize into tissues, organs, organ systems, and ultimately the organism as a whole. Questions centered on morphogenesis have aimed to uncover the mechanisms responsible for this organization, and developmental biology textbooks have identified morphogenesis as one of the main challenges in the field. The concept of morphogenesis is intertwined with those of differentiation, growth, and reproduction.

Format: Articles

Subject: Processes

James G. Wilson's Six Principles of Teratology

James Graves Wilson's six principles of teratology, published in 1959, guide research on teratogenic agents and their effects on developing organisms. Wilson's six principles were inspired by Gabriel Madeleine Camille Dareste's five principles of experimental teratology published in 1877. Teratology is the study of birth defects, and a teratogen is something that either induces or amplifies abnormal embryonic or fetal development and causes birth defects.

Format: Articles

Subject: Processes, Reproduction

DNA and X and Y Chromosomes

Y-chromosomes exist in the body cells of many kinds of male animals. Found in the nucleus of most living animal cells, the X and Y-chromosomes are condensed structures made of DNA wrapped around proteins called histones. The individual histones bunch into groups that the coiled DNA wraps around called a nucleosome, which are roughly 10 nano-meters (nm) across. The histones bunch together to form a helical fiber (30 nm) that spins into a supercoil (200 nm). During much of a cell's life, DNA exists in the 200 nm supercoil phase.

Format: Graphics

Subject: Theories, Processes

Chemical Induction

Research in chemical induction seeks to identify the compound or compounds responsible for differentiation in a developing embryo. Soren Lovtrup compared the search for these compounds to the search for the philosopher's stone. It was based on the assumption that the differentiating agents have to be chemical substances either within cells or in the extracellular matrix.

Format: Articles

Subject: Processes

The French Flag Model

The French flag model represents how embryonic cells receive and respond to genetic information and subsequently differentiate into patterns. Created by Lewis Wolpert in the late 1960s, the model uses the French tricolor flag as visual representation to explain how embryonic cells can interpret genetic code to create the same pattern even when certain pieces of the embryo are removed. Wolpert's model has provided crucial theoretical framework for investigating universal mechanisms of pattern formation during development.

Format: Articles

Subject: Processes, Theories

Bicoid

Bicoid is the protein product of a maternal-effect gene unique to flies of the genus Drosophila . In 1988 Christiane Nüsslein-Volhard identified bicoid as the first known morphogen . A morphogen is a molecule that determines the fate and phenotype of a group of cells through a concentration gradient across that developing region. The bicoid gradient, which extends across the anterior-posterior axis of Drosophila embryos, organizes the head and thorax.

Format: Articles

Subject: Processes

Amniocentesis Prior to 1980

The extraembryonic membranes that surround and originate from the embryos of vertebrates such as birds, reptiles, and mammals are crucial to their development. They are integral to increasing the surface area of the uterus, forming the chorion (which in turn produces the placenta) and the amnion, respectively. The amnion will ultimately surround the embryo in a fluid-filled amniotic cavity. This amniotic fluid, which cushions and protects the fetus and helps prevent the onset of labor, is sampled in amniocentesis to screen for genetic diseases.

Format: Articles

Subject: Processes, Reproduction

Epithelium

Frederik Ruysch, working in the Netherlands, introduced the term epithelia in the third volume of his Thesaurus Anatomicus in 1703. Ruysch created the term from the Greek epi, which means on top of, and thele, which means nipple, to describe the type of tissue he found when dissecting the lip of a cadaver. In the mid nineteenth century, anatomist Albrecht von Haller adopted the word epithelium, designating Ruysch's original terminology as the plural version. In modern science, epithelium is a type of animal tissue in which cells are packed into neatly arranged sheets.

Format: Articles

Subject: Theories, Processes

Fate Map

Early development occurs in a highly organized and orchestrated manner and has long attracted the interest of developmental biologists and embryologists. Cell lineage, or the study of the developmental differentiation of a blastomere, involves tracing a particular cell (blastomere) forward from its position in one of the three germ layers. Labeling individual cells within their germ layers allows for a pictorial interpretation of gastrulation. This chart or graphical representation detailing the fate of each part of an early embryo is referred to as a fate map.

Format: Articles

Subject: Processes