Search

Displaying 1 - 25 of 846 items.

Pages

"The Development of the Turtle Carapace" (1989), by Ann Campbell Burke

Ann Campbell Burke examines the development and evolution of vertebrates, in particular, turtles. Her Harvard University experiments, described in Development of the Turtle Carapace: Implications for the Evolution of a Novel Bauplan, were published in 1989. Burke used molecular techniques to investigate the developmental mechanisms responsible for the formation of the turtle shell.

Format: Articles

Subject: Experiments, Publications

The Carapacial Ridge of Turtles

Two main elements characterize the skeletal morphology of turtles: the carapace and the plastron. For a turtle, the carapacial ridge begins in the embryo as a bulge posterior to the limbs but on both sides of the body. Such outgrowths are the first indication of shell development in turtle embryos. While the exact mechanisms underpinning the formation of the carapacial ridge are still not entirely known, some biologists argue that understanding these embryonic mechanisms is pivotal to explaining both the development of turtles and their evolutionary history.

Format: Articles

Subject: Processes

Mechanistic Realization of the Turtle Shell

Turtle morphology is unlike that of any other vertebrate. The uniqueness of the turtle's bodyplan is attributed to the manner in which the turtle's ribs are ensnared within its hard upper shell. The exact embryological and genetic mechanisms underpinning this peculiar anatomical structure are still a matter of debate, but biologists agree that the evolution of the turtle shell lies in the embryonic development of the turtle.

Format: Articles

Subject: Processes

"Behavioral Thermoregulation by Turtle Embryos" (2011), by Wei-Guo Du, Bo Zhao, Ye Chen, and Richard Shine

In "Behavioral Thermoregulation by Turtle Embryos," published in Proceedings of the National Academy of Sciences in April, 2011, Wei-Guo Du, Bo Zhao, Ye Chen, and Richard Shine report that turtle embryos can move towards warmer temperatures within the egg when presented with a small, 0.8 degrees Celsius gradient. This behavioral thermoregulation may benefit the embryo's fitness by accelerating the rate of development enough to decrease the incubation period by up to four and a half days. Embryos are generally thought to have little control over their surroundings.

Format: Articles

Subject: Publications

The Effects of Diethylstilbestrol on Embryonic Development

Estrogen plays a key role in the regulation of gene transcription. This is accomplished by its ability to act as a ligand and to bind to specific estrogen receptor (ER) molecules, such as ERα and ERβ, which act as nuclear transcription factors. There are three major nuclear estrogen receptor protein domains: the estrogen binding domain, the protein interaction domain, and the DNA binding domain.

Format: Articles

Subject: Disorders

The Effects of Thalidomide on Embryonic Development

Embryogenesis is an intricate process that can easily be disrupted by means of teratogenic agents. Some of these agents target the embryonic period's "window of susceptibility," three to eight weeks after a pregnant woman's last menstruation, when the highest degree of sensitivity to embryonic cell differentiation and organ formation occurs. The embryonic period or critical period is when most organ systems form, whereas the fetal period, week eight to birth, involves the growth and modeling of the organ systems.

Format: Articles

Subject: Processes, Disorders

The Effects of Bisphenol A on Embryonic Development

Bisphenol A (BPA) is an organic compound that was first synthesized by Aleksandr Dianin, a Russian chemist from St. Petersburg, in 1891. The chemical nomenclature of BPA is 2,2-bis (4-hydroxyphenyl) propane. The significance of this synthesized compound did not receive much attention until 1936, when two biochemists interested in endocrinology, Edward Dodds and William Lawson, discovered its ability to act as an estrogen agonist in ovariectomized, estrogen-deficient rats.

Format: Articles

Subject: Disorders, Reproduction

Methylmercury and Human Embryonic Development

Methylmercury (MeHg) is an organic form of mercury that can damage the developing brains of human fetuses. Women who consume methylmercury during pregnancy can bear children who have neurological issues because methylmercury has toxic effects on the nervous system during embryonic development. During the third week of gestation, the human nervous system begins to form in the embryo. During this gestational period, the embryo's nervous system is particularly susceptible to the influence of neurotoxins like methylmercury that can result in abnormalities.

Format: Articles

Subject: Reproduction, Disorders

Apoptosis in Embryonic Development

Apoptosis, or programmed cell death, is a mechanism in embryonic development that occurs naturally in organisms. Apoptosis is a different process from cell necrosis, which is uncontrolled cell death usually after infection or specific trauma. As cells rapidly proliferate during development, some of them undergo apoptosis, which is necessary for many stages in development, including neural development, reduction in egg cells (oocytes) at birth, as well as the shaping of fingers and vestigial organs in humans and other animals. Sydney Brenner, H. Robert Horvitz, and John E.

Format: Articles

Subject: Theories

Process of Eukaryotic Embryonic Development

All sexually reproducing, multicellular diploid eukaryotes begin life as embryos. Understanding the stages of embryonic development is vital to explaining how eukaryotes form and how they are related on the tree of life. This understanding can also help answer questions related to morphology, ethics, medicine, and other pertinent fields of study. In particular, the field of comparative embryology is concerned with documenting the stages of ontogeny.

Format: Articles

Subject: Processes

Telomerase in Human Development

Telomerase is an enzyme that regulates the lengths of telomeres in the cells of many organisms, and in humans it begins to function int the early stages of embryonic development. Telomeres are repetitive sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling. In 1989, Gregg Morin found that telomerase was present in human cells. In 1996, Woodring Wright and his team examined human embryonic cells and found that telomerase was active in them. Scientists manipulate telomerase in cells to give cells the capacity to replicate infinitely.

Format: Articles

Subject: Theories

Temperature-Dependent Sex Determination in Reptiles

The sex of a reptile embryo partly results from the production of sex hormones during development, and one process to produce those hormones depends on the temperature of the embryo's environment. The production of sex hormones can result solely from genetics or from genetics in combination with the influence of environmental factors. In genotypic sex determination, also called genetic or chromosomal sex determination, an organism's genes determine which hormones are produced.

Format: Articles

Subject: Experiments

Inducing Fertilization and Development in Sand Dollars

Sand dollars are common marine invertebrates in the phylum Echinodermata and share the same class (Echinoidea) as sea urchins. They have served as model laboratory organisms for such embryologists as Frank Rattray Lillie and Ernest Everett Just. Both Lillie and Just used Echinarachnius parma for their studies of egg cell membranes and embryo development at the Marine Biological Laboratory (MBL) at Woods Hole, Massachusetts, in the early 1900s.

Format: Articles

Subject: Processes

The Development of Mifepristone for Use in Medication Abortions

In the 1980s, researchers at the pharmaceutical company Roussel-Uclaf in Paris, France, helped develop a biological compound called mifepristone. When a woman takes it, mifepristone interferes with the function of hormones involved in pregnancy and it can therefore be used to terminate pregnancies. In 2000, the US Food and Drug Administration approved mifepristone, also called RU 486, as part of a treatment to induce abortions using drugs instead of surgery, a method called medication abortion.

Format: Articles

Subject: Reproduction

Human Evolution Inferred from Tooth Growth and Development

To study human evolution, researchers sometimes use microstructures found in human teeth and their knowledge of the processes by which those structures grow. Human fetusus begin to develop teeth in utero. As teeth grow, they form a hard outer substance, called enamel, through a process called amelogenesis. During amelogenesis, incremental layers of enamel form in a Circadian rhythm. This rhythmic deposition leaves the enamel with microstructures, called cross-striations and striae of Retzius, which have a regular periodicity.

Format: Articles

Subject: Theories

Slime mold development video by John Tyler Bonner

This video is composed of a sequence of time lapse films created by John Tyler Bonner in the 1940s to show the life cycle of the cellular slime mold, Dictyostelium discoideum. As only the second person to study slime molds, Bonner frequently encountered audiences who had never heard of, let alone seen, the unusual organism. He therefore decided to create a film to present at seminars in order to introduce his object of study. Bonner created the video for his senior thesis at Harvard University with the help of photographer Frank Smith.

Format: Video

Subject: Organisms

Effects of Prenatal Alcohol Exposure on Ocular Development

Maternal consumption of alcohol (ethanol) can result in a range of alcohol-induced developmental defects. In humans, those collective birth defects are called Fetal Alcohol Spectrum Disorders, with the most severe manifestation being Fetal Alcohol Syndrome (FAS). FAS is defined by pre- and post-natal growth retardation, minor facial abnormalities, and deficiencies in the central nervous system (CNS). The eye and ocular system development is particularly susceptible to the effects of prenatal alcohol exposure and can result in visual impairment or blindness.

Format: Articles

Subject: Disorders, Reproduction

Effects of Prenatal Alcohol Exposure on Cerebellum Development

Prenatal exposure to alcohol (ethanol) results in a continuum of physical, neurological, behavioral, and learning defects collectively grouped under the heading fetal alcohol spectrum disorders (FASD). Fetal alcohol syndrome (FAS) is the most severe combination of these defects under this heading, and is characterized by pre- and postnatal growth deficiencies, facial abnormalities, and defects of the central nervous system (CNS).

Format: Articles

Subject: Disorders, Reproduction

Effects of Prenatal Alcohol Exposure on Basal Ganglia Development

Prenatal exposure to alcohol (ethanol) in human and animal models results in a range of alcohol-induced developmental defects. In humans, those collective birth defects are called Fetal Alcohol Spectrum Disorders, with the most severe manifestation being Fetal Alcohol Syndrome (FAS). FAS is defined by pre- and post-natal growth retardation, minor facial abnormalities, and deficiencies in the central nervous system (CNS). The basal ganglia, one of the central nervous system components, are affected by exposure to ethanol during development.

Format: Articles

Subject: Disorders, Reproduction

Effects of Prenatal Alcohol Exposure on Cardiac Development

A variety of developmental defects occur as a result of prenatal exposure to alcohol (ethanol) in utero. In humans, those defects are collectively classified as Fetal Alcohol Spectrum Disorders, with Fetal Alcohol Syndrome (FAS) representing the more severe defects. FAS is defined by pre- and post-natal growth retardation, minor facial abnormalities, and deficiencies in the central nervous system (CNS). In addition to those defects, prenatal exposure to alcohol impacts cardiogenesis, the developmental stage of heart formation.

Format: Articles

Subject: Disorders, Reproduction

The Cell in Development and Inheritance (1900), by Edmund Beecher Wilson

The Cell in Development and Inheritance, by Edmund Beecher Wilson, provided a textbook introduction to cell biology for generations of biologists in the twentieth century. In his book, Wilson integrated information about development, inheritance, chromosomes, organelles, and the structure and functions of cells. First published in 1896, the book started with 371 pages, grew to 483 pages in the second edition that appeared in 1900, and expanded to 1,231 pages by the third and final edition in 1925.

Format: Articles

Subject: Publications

The Interpretation of Development and Heredity (1930), by Edward Stuart Russell

First published in 1930 and reprinted in 1972, Edward Stuart Russell's The Interpretation of Development and Heredity is a work of philosophical and theoretical biology. In this book Russell outlines a methodological and philosophical program aimed at reorienting the biological understanding of development and heredity.

Format: Articles

Subject: Publications

Morphogenesis: An Essay on Development (1952), by John Tyler Bonner

Throughout his long and fruitful career John Tyler Bonner has made great strides in understanding basic issues of embryology and developmental-evolutionary biology. Indeed, Bonner's work on morphogenesis highlighted synergies between development and evolution long before "evo-devo" became a part of the scientific lingua franca. Princeton University Press published his first book, Morphogenesis: An Essay on Development, in 1952. In his autobiography Lives of a Biologist, Bonner described his motivations for writing Morphogenesis as a book about developmental biology.

Format: Articles

Subject: Publications

Stanley Alan Plotkin's Development of a Rubella Vaccine (1969)

In the US during the late 1960s, Stanley Alan Plotkin, John D. Farquhar, Michael Katz, and Fritz Buser isolated a strain of the infectious disease rubella and developed a rubella vaccine with a weakened, or attenuated, version of the virus strain. Rubella, also called German measles, is a highly contagious disease caused by the rubella virus that generally causes mild rashes and fever. However, in pregnant women, rubella infections can lead to developmental defects in their fetuses.

Format: Articles

Subject: Experiments

Somites: Formation and Role in Developing the Body Plan

Somites are blocks of mesoderm that are located on either side of the neural tube in the developing vertebrate embryo. Somites are precursor populations of cells that give rise to important structures associated with the vertebrate body plan and will eventually differentiate into dermis, skeletal muscle, cartilage, tendons, and vertebrae. Somites also determine the migratory paths of neural crest cells and of the axons of spinal nerves.

Format: Articles

Subject: Processes

Pages