Search
Filter by Topic
- (-) Remove Experiments filter Experiments
- (-) Remove Publications filter Publications
- Ethics (1) Apply Ethics filter
Filter by Format
- (-) Remove Articles filter Articles
“Survival of Mouse Embryos Frozen to -196 ° and -269 °C” (1972), by David Whittingham, Stanley Leibo, and Peter Mazur
In 1972, David Whittingham, Stanley Leibo, and Peter Mazur published the paper, “Survival of Mouse Embryos Frozen to -196 ° and -269 °C,” hereafter, “Survival of Mouse Embryos,” in the journal Science. The study marked one of the first times that researchers had successfully cryopreserved, or preserved and stored by freezing, a mammalian embryo and later transferred that embryo to a live mouse who gave birth to viable offspring. Previously, scientists had only been successful cryopreserving single cells, like red blood cells.
Format: Articles
Subject: Experiments, Publications
"CRISPR /Cas9-mediated Gene Editing in Human Tripronuclear Zygotes" (2015), by Junjiu Huang et al.
In 2015, Junjiu Huang and his colleagues reported their attempt to enable CRISPR/cas 9-mediated gene editing in nonviable human zygotes for the first time at Sun Yat-Sen University in Guangzhou, China. Their article, CRISPR /Cas9-mediated Gene Editing in Human Tripronuclear Zygotes, was published in Protein and Cell. Nonviable zygotes are sperm-fertilized eggs that cannot develop into a fetus. Researchers previously developed the CRISPR/cas 9 gene editing tool, which is a system that originated from bacteria as a defense mechanism against viruses.
Format: Articles
Subject: Publications, Experiments
A Series of YouTube Videos Detailing the “CRISPR Babies” Experiment (2018), by He Jiankui
In 2018, He Jiankui uploaded a series of videos to a YouTube channel titled “The He Lab” that detailed one of the first instances of a successful human birth after genome editing had been performed on an embryo using CRISPR-cas9. CRISPR-cas9 is a genome editing tool derived from bacteria that can be used to cut out and replace specific sequences of DNA. He genetically modified embryos at his lab in Shenzhen, China, to make them immune to contracting HIV through indirect perinatal transmission from their father, who was infected with the virus.
Format: Articles
Subject: Publications, Experiments, Ethics