Search

Displaying 1 - 25 of 177 items.

Pages

Meselson, Stahl, and the Replication of DNA: A History of "The Most Beautiful Experiment in Biology" (2001), by Frederic Lawrence Holmes

In 2001, Yale University Press published Frederic Lawrence Holmes' book, Meselson, Stahl, and the Replication of DNA: A History of "The Most Beautiful Experiment in Biology" (Replication of DNA), which chronicles the 1950s debate about how DNA replicates. That experiment verified that DNA replicates semi-conservatively as originally proposed by Watson and Crick. Rather than focusing solely on experiments and findings, Holmes's book presents the investigative processes of scientists studying DNA replication.

Format: Articles

Subject: Publications

Molecular Epigenetics and Development: Histone Conformations, DNA Methylation and Genomic Imprinting

Introduced by Conrad Hal Waddington in 1942, the concept of epigenetics gave scientists a new paradigm of thought concerning embryonic development, and since then has been widely applied, for instance to inheritable diseases, molecular technologies, and indeed the human genome as a whole. A genome contains an embedded intricate coding template that provides a means of genetic expression from the initial steps of embryonic development until the death of the organism. Within the genome there are two prominent components: coding (exons) and non-coding (introns) sequences.

Format: Articles

Subject: Theories

Franklin William Stahl (1929– )

Franklin William Stahl studied DNA replication, bacteriophages, and genetic recombination in the US during the mid-twentieth and early twenty-first centuries. With his colleague Matthew Meselson, Stahl performed an experiment called the Meselson-Stahl experiment, which provided evidence for a process called semi-conservative DNA replication. Semi-conservative replication is a process in which each strand of a parental DNA double helix serves as a template for newly replicated daughter strands, so that one parental strand is conserved in every daughter double helix.

Format: Articles

Subject: People

In the Womb: Identical Twins (2009), by National Geographic

National Geographic's documentary In the Womb: Identical Twins focuses on the prenatal development of human identical twins. Director Lorne Townend uses three-dimensional (3D) and four-dimensional (4D) ultrasound imaging and microscopy to depict twin development , genetic and epigenetic variations in the fetuses, and methods of fetal survival in the confines of the womb. Artist renditions of scientific data fill in areas of development inaccessible to the imaging tools.

Format: Articles

Subject: Outreach, Reproduction

Dennis Lo (1963- )

Dennis Lo, also called Yuk Ming Dennis Lo, is a
professor at the Chinese University of Hong Kong in Hong Kong,
China. In 1997, Lo discovered fetal DNA in maternal
plasma, which is the liquid component of a pregnant woman's
blood. By 2002, Lo distinguished the DNA differences between pregnant women
and their fetuses, enabling scientists to identify fetal DNA in pregnant
women's blood. Lo used his discoveries to develop several
non-invasive and prenatal genetic tests, including tests for blood

Format: Articles

Subject: People, Reproduction

"Gene Regulation for Higher Cells: A Theory" (1969), by Roy J. Britten and Eric H. Davidson

In 1969, Roy J. Britten and Eric H. Davidson published Gene Regulation for Higher Cells: A Theory, in Science. A Theory proposes a minimal model of gene regulation, in which various types of genes interact to control the differentiation of cells through differential gene expression. Britten worked at the Carnegie Institute of Washington in Washington, D.C., while Davidson worked at the California Institute of Technology in Pasadena, California. Their paper was an early theoretical and mechanistic description of gene regulation in higher organisms.

Format: Articles

Subject: Publications

The Effects of Diethylstilbestrol on Embryonic Development

Estrogen plays a key role in the regulation of gene transcription. This is accomplished by its ability to act as a ligand and to bind to specific estrogen receptor (ER) molecules, such as ERα and ERβ, which act as nuclear transcription factors. There are three major nuclear estrogen receptor protein domains: the estrogen binding domain, the protein interaction domain, and the DNA binding domain.

Format: Articles

Subject: Disorders

DNA and X and Y Chromosomes

Y-chromosomes exist in the body cells of many kinds of male animals. Found in the nucleus of most living animal cells, the X and Y-chromosomes are condensed structures made of DNA wrapped around proteins called histones. The individual histones bunch into groups that the coiled DNA wraps around called a nucleosome, which are roughly 10 nano-meters (nm) across. The histones bunch together to form a helical fiber (30 nm) that spins into a supercoil (200 nm). During much of a cell's life, DNA exists in the 200 nm supercoil phase.

Format: Graphics

Subject: Theories, Processes

Victor Ambros (1953-)

Victor Ambros is a professor of molecular medicine at the University of Massachusetts Medical School, and he discovered the first microRNA (miRNA) in 1993. Ambros researched the genetic control of developmental timing in the nematode worm Caenorhabditis elegans and he helped describe gene function and regulation during the worm’s development and embryogenesis. His discovery of miRNA marked the beginning of research into a form of genetic regulation found throughout diverse life forms from plants to humans. Ambros is a central figure in the miRNA and C.

Format: Articles

Subject: People

Mitochondrial DNA (mtDNA)

Mitochondrial DNA (mtDNA) is located outside the nucleus in the liquid portion of the cell (cytoplasm) inside cellular organelles called Mitochondria. Mitochondria are located in all complex or eukaryotic cells, including plant, animal, fungi, and single celled protists, which contain their own mtDNA genome. In animals with a backbone, or vertebrates, mtDNA is a double stranded, circular molecule that forms a circular genome, which ranges in size from sixteen to eighteen kilo-base pairs, depending on species. Each mitochondrion in a cell can have multiple copies of the mtDNA genome.

Format: Articles

Subject: Theories

The Debate over DNA Replication Before the Meselson-Stahl Experiment (1953–1957)

Between 1953 and 1957, before the Meselson-Stahl experiment verified semi-conservative replication of DNA, scientists debated how DNA replicated. In 1953, James Watson and Francis Crick proposed that DNA was composed of two helical strands that wound together in a coil. Their model suggested a replication mechanism, later termed semi-conservative replication, in which parental DNA strands separated and served as templates for the replication of new daughter strands.

Format: Articles

Subject: Theories

Allan Charles Wilson (1934-1991)

Allan C. Wilson studied genes, proteins, and body structures of animals and humans in the US during the second half of the twentieth century. Wilson also studied human evolution. Although morphology and behaviors of humans (Homo sapiens) and great apes differ, Wilson found that they have biochemical and genetic similarities. Wilson and his colleagues calculated the time period of humans' and African apes' common ancestor.

Format: Articles

Subject: People

The Hershey-Chase Experiments (1952), by Alfred Hershey and Martha Chase

In 1951 and 1952, Alfred Hershey and Martha Chase conducted a series of experiments at the Carnegie Institute of Washington in Cold Spring Harbor, New York, that verified genes were made of deoxyribonucleic acid, or DNA. Hershey and Chase performed their experiments, later named the Hershey-Chase experiments, on viruses that infect bacteria, also called bacteriophages. The experiments followed decades of scientists’ skepticism about whether genetic material was composed of protein or DNA.

Format: Articles

Subject: Experiments

Craig C. Mello (1960- )

Craig C. Mello is an American developmental biologist and Nobel Laureate, who helped discover RNA interference (RNAi). Along with his colleague Andrew Fire, he developed gene knockouts using RNAi. In 006 Mello won the Nobel Prize in Physiology or Medicine for his contribution. Mello also contributed to developmental biology, focusing on gene regulation, cell signaling, cleavage formation, germline determination, cell migration, cell fate differentiation, and morphogenesis.

Format: Articles

Subject: People

“Use of reproductive technology for sex selection for nonmedical reasons” (2015), by the Ethics Committee of the American Society for Reproductive Medicine

In June 2015, the Ethics Committee of the American Society for Reproductive Medicine, or ASRM, published “Use of reproductive technology for sex selection for nonmedical reasons” in Fertility and Sterility. In the report, the Committee presents arguments for and against the use of reproductive technology for sex selection for any reason besides avoiding sex-linked disorders, or genetic disorders that only affect a particular sex.

Format: Articles

Subject: Publications

The Meselson-Stahl Experiment (1957–1958), by Matthew Meselson and Franklin Stahl

In an experiment later named for them, Matthew Stanley Meselson and Franklin William Stahl in the US demonstrated during the 1950s the semi-conservative replication of DNA, such that each daughter DNA molecule contains one new daughter subunit and one subunit conserved from the parental DNA molecule. The researchers conducted the experiment at California Institute of Technology (Caltech) in Pasadena, California, from October 1957 to January 1958.

Format: Articles

Subject: Processes, Experiments

Rosalind Elsie Franklin (1920-1958)

Rosalind Elsie Franklin worked with X-ray crystallography at King's College London, UK, and she helped determine the helical structure of DNA in the early 1950s. Franklin's research helped establish molecular genetics, a field that investigates how heredity works on the molecular level. The discovery of the structure of DNA also made future research possible into the molecular basis of embryonic development, genetic disorders, and gene manipulation.

Format: Articles

Subject: People

"On the Replication of Desoxyribonucleic Acid (DNA)" (1954), by Max Delbruck

In 1954 Max Delbruck published On the Replication of Desoxyribonucleic Acid (DNA) to question the semi-conservative DNA replication mechanism proposed that James Watson and Francis Crick had proposed in 1953. In his article published in the Proceedings of the National Academy of Sciences, Delbrück offers an alternative DNA replication mechanism, later called dispersive replication. Unlike other articles before it, On the Replication presents ways to experimentally test different DNA replication theories.

Format: Articles

Subject: Publications

David Baltimore (1938– )

David Baltimore studied viruses and the immune system in the US during the twentieth century. In 1975, Baltimore was awarded the Nobel Prize in Physiology or Medicine for discovering reverse transcriptase, the enzyme used to transfer information from RNA to DNA. The discovery of reverse transcriptase contradicted the central dogma of biology at the time, which stated that the transfer of information was unidirectional from DNA, RNA, to protein.

Format: Articles

Subject: People

Francis Sellers Collins (1950- )

Francis Sellers Collins helped lead the International Human Genome Sequencing Consortium, which helped describe the DNA sequence of the human genome by 2001, and he helped develop technologies used in molecular genetics while working in the US in the twentieth and twenty-first centuries. He directed the US National Center for Human Genome Research (NCHGR), which became the National Human Genome Research Institute (NHGRI), of the US National Institutes of Health (NIH), located in Bethesda, Maryland, from 1993 to 2008.

Format: Articles

Subject: People

The Human Genome Project (1990-2003)

The Human Genome Project (HGP) was an international scientific effort to sequence the entire human genome, that is, to produce a map of the base pairs of DNA in the human chromosomes, most of which do not vary among individuals. The HGP started in the US in 1990 as a public effort and included scientists and laboratories located in France, Germany, Japan, China, and the United Kingdom.

Format: Articles

Subject: Organizations

Barbara McClintock's Transposon Experiments in Maize (1931–1951)

Barbara McClintock conducted experiments on corn (Zea mays) in the United States in the mid-twentieth century to study the structure and function of the chromosomes in the cells. McClintock researched how genes combined in corn and proposed mechanisms for how those interactions are regulated. McClintock received the Nobel Prize in Physiology or Medicine in 1983, the first woman to win the prize without sharing it. McClintock won the award for her introduction of the concept of transposons, also called jumping genes.

Format: Articles

Subject: Experiments

Noninvasive Fetal Aneuploidy Detection for Trisomy 21, 13, and 18

Noninvasive fetal aneuploidy detection technology allows for the detection of fetal genetic conditions, specifically having three chromosomes, a condition called aneuploidy, by analyzing a simple blood sample from the pregnant woman. Dennis Lo and Rossa Chiu researched methods of detection of aneuploidies in the early twenty-first century. Their research has been specifically applied to three trisomies, trisomy twenty-one known as Down syndrome, trisomy eighteen known as Edwards Syndrome, and trisomy thirteen known as Patau Syndrome.

Format: Articles

Subject: Technologies

Angelman Syndrome

Angelman syndrome is a disorder in humans that causes neurological symptoms such as lack of speech, jerky movements, and insomnia. A human cell has two copies of twenty-three chromosomes for a total of forty-six-one copy from its mother and one from its father. But in the case of Angelman syndrome, the maternal chromosome numbered 15 has a mutation or deletion in its DNA and a gene on the paternal chromosome 15 is inactivated in some parts the brain. The result is the paternal gene is silenced during development of the sperm, which is called genetic imprinting.

Format: Articles

Subject: Disorders

Induced Pluripotent Stem Cell Experiments by Kazutoshi Takahashi and Shinya Yamanaka in 2006 and 2007

In 2006, Kazutoshi Takahashi and Shinya Yamanaka reprogrammed mice fibroblast cells, which can produce only other fibroblast cells, to become pluripotent stem cells, which have the capacity to produce many different types of cells. Takahashi and Yamanaka also experimented with human cell cultures in 2007. Each worked at Kyoto University in Kyoto, Japan. They called the pluripotent stem cells that they produced induced pluripotent stem cells (iPSCs) because they had induced the adult cells, called differentiated cells, to become pluripotent stem cells through genetic manipulation.

Format: Articles

Subject: Experiments

Pages