Search

Displaying 1 - 25 of 583 items.

Pages

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Gene

The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene was identified in 1989 by geneticist Lap-Chee Tsui and his research team as the gene associated with cystic fibrosis (CF). Tsui's research pinpointed the gene, some mutations to which cause CF, and it revealed the underlying disease mechanism. The CFTR gene encodes a protein in the cell membrane in epithelial tissues and affects multiple organ systems in the human body. Mutations in the CFTR gene cause dysfunctional regulation of cell electrolytes and water content.

Format: Articles

Subject: Disorders, Reproduction

Cystic Fibrosis

Cystic fibrosis (CF) is a fatal, inherited disease found in humans and characterized by buildup of thick, sticky mucus, particularly in the respiratory and digestive tracts. The abnormally thick mucus prevents the pancreas from functioning normally; it often leads to digestive problems and chronic lung infections. Cystic fibrosis is most prevalent in Caucasian individuals, and approximately 1 in every 29 individuals in the US is a carrier for the mutated CF gene.

Format: Articles

Subject: Disorders

Lap-Chee Tsui (1950-)

Lap-Chee Tsui is a geneticist who discovered the cystic fibrosis (CF) gene, and his research team sequenced human chromosome 7. As the location of the cystic fibrosis gene is now known, it is possible for doctors and specialists to identify in human fetuses the mutation that causes the fatal disease. Tsui's research also outlined the mechanisms for the development of cystic fibrosis, which were previously unknown.

Format: Articles

Subject: People, Reproduction

The Effects of Gene Regulation on Aging in Caenorhabditis elegans (2003)

In 2003, molecular biology and genetics researchers Coleen T. Murphy, Steven A. McCarroll, Cornelia I. Bargmann, Andrew Fraser, Ravi S. Kamath, Julie Ahringer, Hao Li, and Cynthia Kenyon conducted an experiment that investigated the cellular aging in, Caenorhabditis elegans (C. elegans) nematodes. The researchers investigated the interactions between the transcription factor DAF-16 and the genes that regulate the production of an insulin-like growth factor 1 (IGF-1-like) protein related to the development, reproduction, and aging in C. elegans.

Format: Articles

Subject: Experiments

Dorothy Andersen (1901–1963)

Dorothy Andersen studied cystic fibrosis in the United States during the early 1900s. In 1935, Andersen discovered lesions in the pancreas of an infant during an autopsy, which led her to classify a condition she named cystic fibrosis of the pancreas. In 1938, Andersen became the first to thoroughly describe symptoms of the medical condition cystic fibrosis.

Format: Articles

Subject: People

Hedgehog Signaling Pathway

The hedgehog signaling pathway is a mechanism that directs the development of embryonic cells in animals, from invertebrates to vertebrates. The hedgehog signaling pathway is a system of genes and gene products, mostly proteins, that convert one kind of signal into another, called transduction. In 1980, Christiane Nusslein-Volhard and Eric F. Wieschaus, at the European Molecular Biology Laboratory in Heidelberg, Germany, identified several fruit fly (Drosophila melanogaster) genes.

Format: Articles

Subject: Processes

Lysogenic Bacteria as an Experimental Model at the Pasteur Institute (1915-1965)

Lysogenic bacteria, or virus-infected bacteria, were the primary experimental models used by scientists working in the laboratories of the Pasteur Institute in Paris, France, during the 1950s and 1960s. Historians of science have noted that the use of lysogenic bacteria as a model in microbiological research influenced the scientific achievements of the Pasteur Institute's scientists.

Format: Articles

Subject: Organisms, Experiments

The Hedgehog Signaling Pathway in Vertebrates 

The hedgehog signaling pathway is a mechanism that regulates cell growth and differentiation during embryonic development, called embryogenesis, in animals. The hedgehog signaling pathway works both between cells and within individual cells.

Format: Articles

Subject: Theories

Jelly Fish and Green Fluorescent Protein

The crystal jellyfish, Aequorea victoria, produces and emits light, called bioluminescence. Its DNA codes for sequence of 238 amino acids that forms a protein called Green Fluorescent Protein (GFP). FP is folded so that a part of the protein, called the chromophore, is located in the center of the protein. The chemical structure of the chromophore emits a green fluorescence when exposed to light in the range of blue to ultraviolet.

Format: Graphics

Subject: Theories, Processes, Organisms, Technologies

Digit Regeneration Is Regulated by Msx1 and BMP4 in Fetal Mice (2003), by Manjong Han et al.

In the early 2000s, Manjong Han, Xiaodang Yang, Jennifer Farrington, and Ken Muneoka investigated how genes and proteins in fetal mice (Mus musculus) influenced those fetal mice to regenerate severed toes at Tulane University in New Orleans, Louisiana. The group used hind limbs from mice to show how the gene Msx1 (Homeobox 7) functions in regenerating amputated digits.

Format: Articles

Subject: Experiments

Doolan v. IVF America [Brief] (2000)

The implication of the court's decision was that Thomas Doolan's identity or personhood existed at the embryo stage in vitro, thus the fact that he was born with cystic fibrosis was not attributable to the decision of the in vitro fertilization providers to implant one embryo instead of another. The other unused embryo may not have carried the cystic fibrosis genes, but that other embryo was not Thomas Doolan. The decision in Doolan has not been publicly tested in other jurisdictions.

Format: Articles

Subject: Legal, Reproduction

The Role of the Notch Signaling Pathway in Myogenesis

Among other functions, the Notch signaling pathway forestalls the process of myogenesis in animals. The Notch signaling pathway is a pathway in animals by which two adjacent cells within an organism use a protein named Notch to mechanically interact with each other. Myogenesis is the formation of muscle that occurs throughout an animal's development, from embryo to the end of life. The cellular precursors of skeletal muscle originate in somites that form along the dorsal side of the organism.

Format: Articles

Subject: Theories, Processes

The Discovery of p53 Protein

The p53 protein acts as a pivotal suppressor of inappropriate cell proliferation. By initiating suppressive effects through induction of apoptosis, cell senescence, or transient cell-cycle arrest, p53 plays an important role in cancer suppression, developmental regulation, and aging. Its discovery in 1979 was a product of research into viral etiology and the immunology of cancer. The p53 protein was first identified in a study of the role of viruses in cancer through its ability to form a complex with viral tumor antigens.

Format: Articles

Subject: Experiments

Roy John Britten (1919-2012)

Roy John Britten studied DNA sequences in the US in the second
half of the twentieth century, and he helped discover repetitive
elements in DNA sequences. Additionally, Britten helped propose
models and concepts of gene regulatory networks. Britten studied the
organization of repetitive elements and, analyzing data from the
Human Genome Project, he found that the repetitive elements in DNA
segments do not code for proteins, enzymes, or cellular parts.
Britten hypothesized that repetitive elements helped cause cells to

Format: Articles

Subject: People

"Male Development of Chromosomally Female Mice Transgenic for Sry gene" (1991), by Peter Koopman, et al.

Early 1990s research conducted by Peter Koopman, John Gubbay, Nigel Vivian, Peter Goodfellow, and Robin Lovell-Badge, showed that chromosomally female (XX) mice embryos can develop as male with the addition of a genetic fragment from the Y chromosome of male mice. The genetic fragment contained a segment of the mouse Sry gene, which is analogous to the human SRY gene. The researchers sought to identify Sry gene as the gene that produced the testis determining factor protein (Tdf protein in mice or TDF protein in humans), which initiates the formation of testis.

Format: Articles

Subject: Experiments

"A Genomic Regulatory Network for Development" (2002), by Eric H. Davidson, et al.

In 2002 Eric Davidson and his research team published 'A Genomic Regulatory Network for Development' in Science. The authors present the first experimental verification and systemic description of a gene regulatory network. This publication represents the culmination of greater than thirty years of work on gene regulation that began in 1969 with 'A Gene Regulatory Network for Development: A Theory' by Roy Britten and Davidson. The modeling of a large number of interactions in a gene network had not been achieved before.

Format: Articles

Subject: Publications

The Genetic Control and Cytoplasmic Expression of 'Inducibility' in the synthesis of B-galactosidase" (1959), by Arthur B. Pardee, Francois Jacob, and Jacques Monod

Between 1957 and 1959, Arthur Pardee, Francois Jacob, and Jacques Monod conducted a set of experiments at the Pasteur Institute in Paris, France, that was later called the PaJaMa Experiments, a moniker derived from the researchers' last names. In these experiments, they described how genes of a species of single-celled bacteria, called Escherichia coli (E. coli), controlled the processes by which enzymes were produced in those bacteria.

Format: Articles

Subject: Experiments

Cornelia Isabella Bargmann (1961- )

Cornelia Isabella Bargmann studied the relationship between genes, neural circuits, and behavior in the roundworm Caenorhabditis elegans (C. elegans) during the twentieth and twenty-first centuries in the US. Bargmann’s research focused on how the sense of smell (olfaction) in the nematode word Caenorhabditis elegans. She provided a model to study how neural circuits develop and function in the human brain, as the genetic regulatory pathways are similar.

Format: Articles

Subject: People

The Effects of Diethylstilbestrol on Embryonic Development

Estrogen plays a key role in the regulation of gene transcription. This is accomplished by its ability to act as a ligand and to bind to specific estrogen receptor (ER) molecules, such as ERα and ERβ, which act as nuclear transcription factors. There are three major nuclear estrogen receptor protein domains: the estrogen binding domain, the protein interaction domain, and the DNA binding domain.

Format: Articles

Subject: Disorders

Paretta v. Medical Offices for Human Reproduction [Brief] (2003)

The court decided a child of in vitro fertilization born with cystic fibrosis does not have the right to sue for wrongful life even in the presence of demonstrable acts of medical negligence because to allow such a case would grant the IVF child rights not possessed by naturally born children. The decision in Paretta has not been publicly tested in other jurisdictions.

Format: Articles

Subject: Legal, Reproduction

The Notch Signaling Pathway in Embryogenesis

The Notch signaling pathway is a mechanism in animals by which adjacent cells communicate with each other, conveying spatial information and genetic instructions for the animal's development. All multicellular animals utilize Notch signaling, which contributes to the formation, growth, and development of embryos (embryogenesis). Notch signaling also contributes to the differentiation of embryonic cells into various types of cells into various types of cells, such as neurons.

Format: Articles

Subject: Processes

The Role of the Notch signaling pathway in Somitogenesis

Among other functions, the Notch signaling pathway contributes to the development of somites in animals. It involves a cell signaling mechanism with a wide range of functions, including cellular differentiation, and the formation of the embryonic structures (embryogenesis). All multicellular animals use Notch signaling, which is involved in the development, maintenance, and regeneration of a range of tissues. The Notch signaling pathways spans two cells, and consists of receptor proteins, which cross one cell's membrane and interacts with proteins on adjacent cells, called ligands.

Format: Articles

Subject: Theories, Processes

Mechanism of Notch Signaling

Mechanism of Notch Signaling: The image depicts a type of cell signaling, in which two animal cells interact and transmit a molecular signal from one to the other. The process results in the production of proteins, which influence the cells as they differentiate, move, and contribute to embryological development. In the membrane of the signaling cell, there is a ligand (represented by a green oval). The ligand functions to activate a change in a receptor molecule. In the receiving cell, there are receptors; in this case, Notch proteins (represented by orange forks).

Format: Graphics

Subject: Theories, Processes

Sheldon Clark Reed (1910-2003)

Sheldon Clark Reed helped establish the profession of genetic counseling in the US during the twentieth century. In 1947 Reed coined the term genetic counseling to describe the interaction of a doctor explaining to a patient the likelihood of passing a certain trait to their offspring. With physicians being able to test for genetic abnormalities like cystic fibrosis, Reed helped trained individuals give patients the tools to make informed decisions. In 1955 Reed published the book Counseling in Medical Genetics.

Format: Articles

Subject: People

"Genetic Control of Biochemical Reactions in Neurospora" (1941), by George W. Beadle and Edward L. Tatum

George Wells Beadle and Edward Lawrie Tatum's 1941 article Genetic Control of Biochemical Reactions in Neurospora detailed their experiments on how genes regulated chemical reactions, and how the chemical reactions in turn affected development in the organism. Beadle and Tatum experimented on Neurospora, a type of bread mold, and they concluded that mutations to genes affected the enzymes of organisms, a result that biologists later generalized to proteins, not just enzymes.

Format: Articles

Subject: Experiments

Pages