Search

Displaying 1 - 25 of 603 items.

Pages

“Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III” (1944) by Oswald Avery, Colin MacLeod and Maclyn McCarty

In 1944, Oswald Avery, Colin MacLeod, and Maclyn McCarty published an article in which they concluded that genes, or molecules that dictate how organisms develop, are made of deoxyribonucleic acid, or DNA. The article is titled “Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III,” hereafter “Transformation.” The authors isolated, purified, and characterized genes within bacteria and found evidence that those genes were made of DNA and not protein.

Format: Articles

Subject: Publications

"Developmental Effects of Endocrine-Disrupting Chemicals in Wildlife and Humans" (1993), by Theo Colborn, Frederick S. vom Saal, and Ana M. Soto

Developmental Effects of Endocrine-Disrupting Chemicals in Wildlife and Humans, was published in 1993 in Environmental Health Perspectives. In the article, the authors present an account of two decades' worth of scientific research that describes the effects of certain pollutants on the health of wildlife, domestic animals, and humans, particularly when exposure takes place during embryonic growth. The term endocrine disruptor was coined in the article to describe the chemical pollutants that target the development and function of the endocrine system.

Format: Articles

Subject: Publications

"Genetic Programming: Artificial Nervous Systems, Artificial Embryos and Embryological Electronics" (1991), by Hugo de Garis

In 1991, Hugo de Garis' article "Genetic Programming: Artificial Nervous Systems, Artificial Embryos and Embryological Electronics" was published in the book Parallel Problem Solving from Nature. With this article de Garis hoped to create what he envisioned as a new branch of artificial embryology called embryonics (short term for "embryological electronics"). Embryonics is based on the idea of adapting the processes found in embryonic development to build artificial systems.

Format: Articles

Subject: Publications

Chemical Induction

Research in chemical induction seeks to identify the compound or compounds responsible for differentiation in a developing embryo. Soren Lovtrup compared the search for these compounds to the search for the philosopher's stone. It was based on the assumption that the differentiating agents have to be chemical substances either within cells or in the extracellular matrix.

Format: Articles

Subject: Processes

Karl Ernst von Baer's Laws of Embryology

In 1828, while working at the University of Konigsberg in Konigsberg, Germany Karl Ernst von Baer proposed four laws of animal development, which came to be called von Baer's laws of embryology. With these laws, von Baer described the development (ontogeny) of animal embryos while also critiquing popular theories of animal development at the time.

Format: Articles

Subject: Theories

Neurocristopathies

Neurocristopathies are a class of pathologies in vertebrates,
including humans, that result from abnormal expression, migration,
differentiation, or death of neural crest cells (NCCs) during embryonic development. NCCs are cells
derived from the embryonic cellular structure called the neural crest.
Abnormal NCCs can cause a neurocristopathy by chemically affecting the
development of the non-NCC tissues around them. They can also affect the
development of NCC tissues, causing defective migration or

Format: Articles

Subject: Theories

A History of Embryology (1959), by Joseph Needham

In 1931 embryologist and historian Joseph Needham published a well-received three-volume treatise titled Chemical Embryology. The first four chapters from this work were delivered as lectures on Speculation, Observation, and Experiment, as Illustrated by the History of Embryology at the University of London. The same lectures were later released as a book published in 1934 titled A History of Embryology.

Format: Articles

Subject: Publications

"The Chemical Basis of Morphogenesis" (1952), by Alan M. Turing

In 1952 the article "The Chemical Basis of Morphogenesis" by the British mathematician and logician Alan M. Turing was published in Philosophical Transactions of the Royal Society of London. In that article Turing describes a mathematical model of the growing embryo. He uses this model to show how embryos develop patterns and structures (e.g., coat patterns and limbs, respectively). Turing's mathematical approach became fundamental for explaining the developmental process of embryos.

Format: Articles

Subject: Publications

Anencephaly

Anencephaly is an open neural tube defect, meaning that part of the neural tube does not properly close or that it has reopened during early embryogenesis. An embryo with anencephaly develops without the top of the skull, but retains a partial skull, including the face. Anencephaly is one of the most common birth defects of the neural tube, occurring at a rate of approximately one in one thousand human pregnancies. The condition can be caused by environmental exposure to chemicals, dietary deficiencies, or genetic mutations.

Format: Articles

Subject: Disorders, Reproduction

Artificial Parthenogenesis and Fertilization (1913), by Jacques Loeb

Jacques Loeb is best known for his embryological work investigating parthenogenesis in invertebrates. Artificial Parthenogenesis and Fertilization is a revised and English-translated work from his earlier book, Die chemische Entwicklungserregung des tierischen Eies (1900). Artificial Parthenogenesis describes Loeb's many and varied methodical experiments to initiate egg development without fertilization by sperm. As is true with much of science, some of Loeb's experiments were successful and many were not.

Format: Articles

Subject: Publications

Human Fertilisation and Embryology Authority (1991- )

In 1991, the
United Kingdom established the Human Fertilisation and Embryology
Authority (HFEA) as a response to technologies that used human embryos.
The HFEA is a regulatory power of the Health and Social Services
Department in London, UK, that oversees the implementation of
reproductive technologies and the use of embryos in research within the
United Kingdom. It establishes protocols by which researchers may use
human embryos, develops legislation on how human embryos are stored and

Format: Articles

Subject: Organizations

Pages