Search
Filter by Topic
- (-) Remove Processes filter Processes
- Theories (27) Apply Theories filter
- Reproduction (22) Apply Reproduction filter
- Organisms (10) Apply Organisms filter
- Publications (9) Apply Publications filter
- Technologies (9) Apply Technologies filter
- Disorders (7) Apply Disorders filter
- Ethics (5) Apply Ethics filter
- Experiments (4) Apply Experiments filter
- People (3) Apply People filter
- Organizations (1) Apply Organizations filter
The Yale Embryo
In 1934 a fourteen-day-old embryo was discovered during a postmortem examination and became famous for being the youngest known human embryo specimen at the time. The embryo was coined "the Yale Embryo," named after the location where it was discovered, Yale University in New Haven, Connecticut. During the early twentieth century, the rush to collect embryos as well as to find younger and younger embryos was at an all time high, and the Yale Embryo is representative of the this enthusiasm.
Format: Articles
Subject: Processes, Reproduction
Inducing Fertilization and Development in Sand Dollars
Sand dollars are common marine invertebrates in the phylum Echinodermata and share the same class (Echinoidea) as sea urchins. They have served as model laboratory organisms for such embryologists as Frank Rattray Lillie and Ernest Everett Just. Both Lillie and Just used Echinarachnius parma for their studies of egg cell membranes and embryo development at the Marine Biological Laboratory (MBL) at Woods Hole, Massachusetts, in the early 1900s.
Format: Articles
Subject: Processes
Post-Coital Oral Emergency Contraception
Post-coital oral emergency contraception is used for the prevention of pregnancy after intercourse. The contraception comes in the form of pills, often collectively referred to as morning-after pills. Post-coital use of morning-after pills separates them from traditional contraception which is either a continual preventative process, such as the birth control pill, or used during intercourse, such as condoms.
Format: Articles
Subject: Processes, Reproduction
Gastrulation in Mus musculus (common house mouse)
As mice embryos develop, they undergo a stage of development called gastrulation. The hallmark of vertebrate gastrulation is the reorganization of the inner cell mass (ICM) into the three germ layers: ectoderm, mesoderm, and endoderm. Mammalian embryogenesis occurs within organisms; therefore, gastrulation was originally described in species with easily observable embryos. For example, the African clawed frog (Xenopus laevis) is the most widely used organism to study gastrulation because the large embryos develop inside a translucent membrane.
Format: Articles
Subject: Processes, Experiments
Nuclear Transplantation
Nuclear transplantation is a method in which the nucleus of a donor cell is relocated to a target cell that has had its nucleus removed (enucleated). Nuclear transplantation has allowed experimental embryologists to manipulate the development of an organism and to study the potential of the nucleus to direct development. Nuclear transplantation, as it was first called, was later referred to as somatic nuclear transfer or cloning.
Format: Articles
Subject: Processes
Tissue Engineering
Tissue engineering is a field of regenerative medicine that integrates the knowledge of scientists, physicians, and engineers into the construction or reconstruction of human tissue. Practitioners of tissue engineering seek to repair, replace, maintain, and enhance the abilities of a specific tissue or organ by means of living cells. More often than not stem cells are the form of living cells used in this technology. Tissue engineering is one of the disciplines involved in translating knowledge of developmental biology into the clinical setting.
Format: Articles
Subject: Processes
Morphogenesis
The term morphogenesis generally refers to the processes by which order is created in the developing organism. This order is achieved as differentiated cells carefully organize into tissues, organs, organ systems, and ultimately the organism as a whole. Questions centered on morphogenesis have aimed to uncover the mechanisms responsible for this organization, and developmental biology textbooks have identified morphogenesis as one of the main challenges in the field. The concept of morphogenesis is intertwined with those of differentiation, growth, and reproduction.
Format: Articles
Subject: Processes
Fate Map
Early development occurs in a highly organized and orchestrated manner and has long attracted the interest of developmental biologists and embryologists. Cell lineage, or the study of the developmental differentiation of a blastomere, involves tracing a particular cell (blastomere) forward from its position in one of the three germ layers. Labeling individual cells within their germ layers allows for a pictorial interpretation of gastrulation. This chart or graphical representation detailing the fate of each part of an early embryo is referred to as a fate map.
Format: Articles
Subject: Processes
Gastrulation in Gallus gallus (Domestic Chicken)
Gastrulation is an early stage in embryo development in which the blastula reorganizes into three germ layers: the ectoderm, the mesoderm, and the endoderm. Gastrulation occurs after cleavage but before neurulation and organogenesis. Ernst Haeckel coined the term; gaster, meaning stomach in Latin, is the root for gastrulation, as the gut is one of the most unique creations of the gastrula.
Format: Articles
Subject: Processes
Hensen's Node
A node, or primitive knot, is an enlarged group of cells located in the anterior portion of the primitive streak in a developing gastrula. The node is the site where gastrulation, the formation of the three germ layers, first begins. The node determines and patterns the anterior-posterior axis of the embryo by directing the development of the chordamesoderm. The chordamesoderm is a specific type of mesoderm that will differentiate into the notochord, somites, and neural tube. Those structures will later form the vertebral column.
Format: Articles
Subject: Processes
Hamburger-Hamilton Staging Series (1951)
In 1951 Viktor Hamburger and Howard Hamilton created an embryonic staging series from a combination of photographs and drawings from other researchers. The Hamburger-Hamilton stages are a sequence of images depicting 46 chronological stages in chick development. The images begin with a fertilized egg and end with a fully developed chick. The Hamburger-Hamilton staging series was produced in order to replace a previous chick staging series created in 1900. The earlier attempt lacked specific details and staged the chick embryo by using only morphological characteristics.
Format: Articles
Subject: Processes
Homeobox Genes and the Homeobox
Homeobox genes are a cluster of regulatory genes that are spatially and temporally expressed during early embryological development. They are interesting from both a developmental and evolutionary perspective since their sequences are highly conserved and shared across an enormously wide array of living taxa.
Format: Articles
Subject: Processes
Chemical Induction
Research in chemical induction seeks to identify the compound or compounds responsible for differentiation in a developing embryo. Soren Lovtrup compared the search for these compounds to the search for the philosopher's stone. It was based on the assumption that the differentiating agents have to be chemical substances either within cells or in the extracellular matrix.
Format: Articles
Subject: Processes
Somites: Formation and Role in Developing the Body Plan
Somites are blocks of mesoderm that are located on either side of the neural tube in the developing vertebrate embryo. Somites are precursor populations of cells that give rise to important structures associated with the vertebrate body plan and will eventually differentiate into dermis, skeletal muscle, cartilage, tendons, and vertebrae. Somites also determine the migratory paths of neural crest cells and of the axons of spinal nerves.
Format: Articles
Subject: Processes
Reassessment of Carrel's Immortal Tissue Culture Experiments
In the 1910s, Alexis Carrel, a French surgeon and biologist, concluded that cells are intrinsically immortal. His claim was based on chick-heart tissue cultures in his laboratory that seemed to be able to proliferate forever. Carrel's ideas about cellular immortality convinced his many contemporaries that cells could be maintained indefinitely. In the 1960s, however, Carrel's thesis about cell immortality was put into question by the discovery that human diploid cells can only proliferate for a finite period.
Format: Articles
The Effects of Thalidomide on Embryonic Development
Embryogenesis is an intricate process that can easily be disrupted by means of teratogenic agents. Some of these agents target the embryonic period's "window of susceptibility," three to eight weeks after a pregnant woman's last menstruation, when the highest degree of sensitivity to embryonic cell differentiation and organ formation occurs. The embryonic period or critical period is when most organ systems form, whereas the fetal period, week eight to birth, involves the growth and modeling of the organ systems.
Format: Articles
Teratomas
Teratomas are embryonal tumors that normally arise from germ cells and are typically benign. They are defined as being composed either of tissues that are foreign to the area in which they form, or of tissues that derive from all three of the germ layers. Malignant teratomas are known as teratocarcinomas; these cancerous growths have played a pivotal role in the discovery of stem cells. "Teratoma" is Greek for "monstrous tumor"; these tumors were so named because they sometimes contain hair, teeth, bone, neurons, and even eyes.
Format: Articles
Nerve Growth Factor
Nerve growth factor (NGF) is a signaling protein and growth factor implicated in a wide range of development and maintenance functions. NGF was discovered through a series of experiments in the 1950s on the development of the chick nervous system. Since its discovery, NGF has been found to act in a variety of tissues throughout development and adulthood. It has been implicated in immune function, stress response, nerve maintenance, and in neurodegenerative diseases.
Format: Articles
Subject: Processes
The French Flag Model
The French flag model represents how embryonic cells receive and respond to genetic information and subsequently differentiate into patterns. Created by Lewis Wolpert in the late 1960s, the model uses the French tricolor flag as visual representation to explain how embryonic cells can interpret genetic code to create the same pattern even when certain pieces of the embryo are removed. Wolpert's model has provided crucial theoretical framework for investigating universal mechanisms of pattern formation during development.
Format: Articles
Epidermal Growth Factor
Epidermal growth factor is a signaling molecule that stimulates the growth of epidermal tissues during development and throughout life. Stanley Cohen discovered epidermal growth factor (EGF) during studies of nerve growth factor as a side effect of other experiments. EGF stimulates tissue growth by initiating a variety of cellular mechanisms. This work led to the 1986 Nobel Prize in Physiology or Medicine awarded to Cohen and Rita Levi-Montalcini.
Format: Articles
Subject: Processes
Embryonic Differentiation in Animals
Embryonic differentiation is the process of development during which embryonic cells specialize and diverse tissue structures arise. Animals are made up of many different cell types, each with specific functions in the body. However, during early embryonic development, the embryo does not yet possess these varied cells; this is where embryonic differentiation comes into play. The differentiation of cells during embryogenesis is the key to cell, tissue, organ, and organism identity.
Format: Articles
Subject: Processes
Gastrulation in Xenopus
The process of gastrulation allows for the formation of the germ layers in metazoan embryos, and is generally achieved through a series of complex and coordinated cellular movements. The process of gastrulation can be either diploblastic or triploblastic. In diploblastic organisms like cnidaria or ctenophora, only the endoderm and the ectoderm form; in triploblastic organisms (most other complex metazoans), triploblastic gastrulation produces all three germ layers.
Format: Articles
Subject: Processes
Circulatory Changes at Birth
When placental mammals are born their circulatory systems undergo radical changes as the newborns are prepared for independent life. The lungs are engaged, becoming the primary source of fresh oxygen, replacing the placental barrier as a means for blood-gas exchange.
Format: Articles
Subject: Processes
Hematopoietic Stem Cells
The discovery of hematopoietic stem cells (HSCs) provided a pioneering step in stem cell research. HSCs are a type of multipotent adult stem cell, characterized by their ability to self-renew and differentiate into erythrocyte (red blood cell) and leukocyte (white blood cell) cell lineages. In terms of function, these cells are responsible for the continual renewal of the erythrocytes, leukocytes, and platelets in the body through a process called hematopoiesis. They also play an important role in the formation of vital organs such as the liver and spleen during fetal development.
Format: Articles
Subject: Processes
Homunculus
The term homunculus is Latin for "little man." It is used in neurology today to describe the map in the brain of sensory neurons in each part of the body (the somatosensory homunculus). An early use of the word was in the 1572 work by Paracelsus regarding forays into alchemy, De Natura Rerum, in which he gave instructions in how to create an infant human without fertilization or gestation in the womb. In the history of embryology, the homunculus was part of the Enlightenment-era theory of generation called preformationism.
Format: Articles
Subject: Processes