Search

Displaying 201 - 225 of 1107 items.

Carl Richard Moore (1892-1955)

Carl Richard Moore was a professor and researcher at the University of Chicago in Chicago, Illinois who studied sex hormones in animals from 1916 until his death in 1955. Moore focused on the role of hormones on sex differentiation in offspring, the optimal conditions for sperm production, and the effects of vasectomy or testicular implants on male sex hormone production. Moore's experiments to create hermaphrodites in the laboratory contributed to the theory of a feedback loop between the pituitary and fetal gonadal hormones to control sex differentiation.

Format: Articles

Subject: People

Leo Kanner (1894-1981)

Leo Kanner studied and described early infantile autism in humans in the US during the twentieth century. Though Eugen Bleuler first coined the term autism in 1910 as a symptom of schizophrenia, Kanner helped define autism as a disease concept separate from schizophrenia. He helped found an early child psychiatry department in 1930 at the Johns Hopkins University Hospital in Baltimore, Maryland.

Format: Articles

Subject: People

The Yale Embryo

In 1934 a fourteen-day-old embryo was discovered during a postmortem examination and became famous for being the youngest known human embryo specimen at the time. The embryo was coined "the Yale Embryo," named after the location where it was discovered, Yale University in New Haven, Connecticut. During the early twentieth century, the rush to collect embryos as well as to find younger and younger embryos was at an all time high, and the Yale Embryo is representative of the this enthusiasm.

Format: Articles

Subject: Processes, Reproduction

Eric Wieschaus (1947- )

Eric Wieschaus studied how genes cause fruit fly larvae to develop in the US and Europe during the twentieth and twenty-first centuries. Using the fruit fly Drosophila melanogaster, Wieschaus and colleague Christiane Nusslein-Volhard described genes and gene products that help form the fruit fly body plan and establish the larval segments during embryogenesis. This work earned Wieschaus and Nüsslein-Volhard the 1995 Nobel Prize in Physiology or Medicine.

Format: Articles

Subject: People

"Apoptosis: A Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics" (1972), by John F. R. Kerr, Andrew H. Wyllie and Alastair R. Currie

"Apoptosis: A Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics" (hereafter abbreviated as "Apoptosis") was published in the British Journal of Cancer in 1972 and co-authored by three pathologists who collaborated at the University of Aberdeen, Scotland. In this paper the authors propose the term apoptosis for regulated cell death that proceeds through active, controlled morphological changes. This is in contrast to necrosis, a passive mode of cell death that results from uncontrolled cellular reactions to injury or stress.

Format: Articles

Subject: Publications

Morphogenesis: An Essay on Development (1952), by John Tyler Bonner

Throughout his long and fruitful career John Tyler Bonner has made great strides in understanding basic issues of embryology and developmental-evolutionary biology. Indeed, Bonner's work on morphogenesis highlighted synergies between development and evolution long before "evo-devo" became a part of the scientific lingua franca. Princeton University Press published his first book, Morphogenesis: An Essay on Development, in 1952. In his autobiography Lives of a Biologist, Bonner described his motivations for writing Morphogenesis as a book about developmental biology.

Format: Articles

Subject: Publications

Embryonic Sex Differentiation and Sex Hormones (1947), by Carl R. Moore

In 1947, Carl Richard Moore, a researcher at the University of Chicago, in Chicago, Illinois, wrote Embryonic Sex Differentiation and Sex Hormones, which was published in the same year as a first-edition monograph. In the book, Moore argues that regulation of sex differentiation in mammals is not controlled by sex hormones secreted by embryonic sex organs (gonads), but is controlled by non-hormonal genetic factors.

Format: Articles

Subject: Publications, Experiments

Francesco Redi (1626-1698)

Francesco Redi, son of Florentine physician Cecilia de' Ghinci and Gregorio Redi, was born in Arezzo, Italy, on 18 February 1626. He studied philosophy and medicine at the University of Pisa, graduating on 1 May 1647. A year later, Redi moved to Florence and registered at the Collegio Medico. There he served at the Medici Court as both the head physician and superintendent of the ducal pharmacy and foundry. Redi was also a member of the Accademia del Cimento, which flourished from 1657-1667. It was during this decade that Redi produced his most important works.

Format: Articles

Subject: People

"Visualizing Human Embryos" (1999), by Bradley Richard Smith

In March 1999 Bradley Richard Smith, a professor at the University of Michigan, unveiled the first digital magnetic resonance images of human embryos. In his article "Visualizing Human Embryos for Scientific American," Smith displayed three-dimensional images of embryos using combinations of Magnetic Resonance Microscopy (MRM), light microscopy, and various computer editing. He created virtual embryo models that it is possible to view as dissections, animations, or in their whole 3D form. Smith's images constitute a new way of visualizing embryos.

Format: Articles

Subject: Outreach, Publications

Gunther von Hagens' Plastination Technique

Plastination is a technique for preserving tissues, organs, and whole bodies for medical purposes and public display. Gunther von Hagens invented a form of the method in 1977 at Heidelberg University in Heidelberg, Germany after observing medical students struggle working with cadavers that quickly decomposed. Von Hagens' body models, referred to as plastinates, have since become widely used educational tools not only for those studying anatomy and medicine, but also for the general public.

Format: Articles

Subject: Technologies

"In vitro Experiments on the Effects of Mouse Sarcomas 180 and 37 on the Spinal and Sympathetic Ganglia of the Chick Embryo" (1954), by Rita Levi-Montalcini, Viktor Hamburger, and Hertha Meyer

"In vitro Experiments on the Effects of Mouse Sarcomas 180 and 37 on the Spinal and Sympathetic Ganglia of the Chick Embryo" were experiments conducted by Rita Levi-Montalcini in conjunction with Viktor Hamburger and Hertha Meyer and published in Cancer Research in 1954. In this series of experiments, conducted at the University of Brazil, Levi-Montalcini demonstrated increased nerve growth by introducing specific tumors (sarcomas) to chick ganglia. Ganglia are clusters of nerve cells, from which nerve fibers emerge.

Format: Articles

Subject: Experiments

"Induction and Patterning of the Primitive Streak, an Organizing Center of Gastrulation in the Amniote" (2004), by Takashi Mikawa, Alisa M. Poh, Kristine A. Kelly, Yasuo Ishii, and David E. Reese

"Induction and Patterning of the Primitive Streak, an Organizing Center of Gastrulation in the Amniote," (hereafter referred to as "Induction") examines the mechanisms underlying early amniote gastrulation and the formation of the primitive streak and midline axis. The review, authored by Takashi Mikawa and colleagues at Cornell University Medical College, was published in Developmental Dynamics in 2004.

Format: Articles

Subject: Publications

Albert William Liley (1929–1983)

Albert William Liley advanced the science of fetal physiology and the techniques of life-saving in utero blood transfusions for fetuses with Rh incompatibility, also known as hemolytic disease. Due to his advances, fetuses too young to survive premature delivery, and likely to die in utero if their Rh incompabilities were left untreated, were successfully transfused and carried to term. Liley was as passionate as a clinician and researcher as he was about his views on the rights of the unborn.

Format: Articles

Subject: People, Reproduction

Ian Hector Frazer (1953– )

Ian Hector Frazer studied the human immune system and vaccines in Brisbane, Australia, and helped invent and patent the scientific process and technology behind what later became the human papillomavirus, or HPV, vaccinations. According to the Centers for Disease Control and Prevention of the US, or CDC, HPV is the most common sexually transmitted infection, and can lead to genital warts, as well as cervical, head, mouth, and neck cancers.

Format: Articles

Subject: People

Torsten Wiesel (1924– )

Torsten Nils Wiesel studied visual information processing and development in the US during the twentieth century. He performed multiple experiments on cats in which he sewed one of their eyes shut and monitored the response of the cat’s visual system after opening the sutured eye. For his work on visual processing, Wiesel received the Nobel Prize in Physiology or Medicine in 1981 along with David Hubel and Roger Sperry.

Format: Articles

Subject: People

Ilya Ilyich Mechnikov (Elie Metchnikoff) (1845-1916)

Ilya Ilyich Mechnikov studied phagocytes, immune function, and starfish embryos in Europe during the late nineteenth and early twentieth centuries. Mechnikov adopted the French form of his name, Élie Metchnikoff, in the last twenty-five years of his life. In 1908, he won the Nobel Prize in Physiology or Medicine with Paul Ehrlich for their contributions to immunology. Mechnikov discovered phagocytes, immune cells that protect organisms by ingesting foreign particles or microorganisms, by conducting experiments on starfish larvae.

Format: Articles

Subject: People

Germ Layers

A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through the process of gastrulation. During gastrulation, a hollow cluster of cells called a blastula reorganizes into two primary germ layers: an inner layer, called endoderm, and an outer layer, called ectoderm.

Format: Articles

Subject: Theories, Processes

Elizabeth Dexter Hay (1927–2007)

Elizabeth Dexter Hay studied the cellular processes that affect development of embryos in the US during the mid-twentieth and early twenty-first centuries. In 1974, Hay showed that the extracellular matrix, a collection of structural molecules that surround cells, influences cell behavior. Cell growth, cell migration, and gene expression are influenced by the interaction between cells and their extracellular matrix.

Format: Articles

Subject: People

Sheppard-Towner Maternity and Infancy Protection Act (1921)

In November 1921, US Congress passed the National Maternity and Infancy Protection Act, also called the Sheppard-Towner Act. The Act provided federal funds to states to establish programs to educate people about prenatal health and infant welfare. Advocates argued that it would curb the high infant mortality rate in the US.

Format: Articles

Subject: Legal, Outreach

David Baltimore (1938– )

David Baltimore studied viruses and the immune system in the US during the twentieth century. In 1975, Baltimore was awarded the Nobel Prize in Physiology or Medicine for discovering reverse transcriptase, the enzyme used to transfer information from RNA to DNA. The discovery of reverse transcriptase contradicted the central dogma of biology at the time, which stated that the transfer of information was unidirectional from DNA, RNA, to protein.

Format: Articles

Subject: People

Chicago Women’s Liberation Union (1969–1977)

The Chicago Women’s Liberation Union, hereafter Union or CWLU, was a feminist union that operated in Chicago, Illinois, from 1969 to 1977 and was the first and largest union, at the time of its operation, focused on women’s issues. The Union organized women with the self-proclaimed collective goal of achieving liberation from sexism and inequality. Within the larger CWLU, smaller groups and chapters formed to address issues such as abortion, rape, child care, and reproductive health, among others.

Format: Articles

Subject: Organizations

“Invasive and Non-invasive Methods for the Diagnosis of Endometriosis” (2010), by Albert L. Hsu, Izabella Khachikyan, and Pamela Stratton

In 2010, Albert L. Hsu, Izebella Khchikyan, and Pamela Stratton published “Invasive and Non-invasive Methods for the Diagnosis of Endometriosis,” henceforth “Methods for the Diagnosis of Endometriosis,” in Clinical Obstetrics and Gynecology. In the article, the authors describe how specific types of endometriotic lesions appear in the body and evaluate five methods for diagnosing endometriosis. Endometriosis is the growth of endometrium, the tissue that normally lines the inside of the uterus, outside of the uterus.

Format: Articles

Subject: Publications

“All-fours Maneuver for Reducing Shoulder Dystocia During Labor” (1999), by Joseph P. Bruner, Susan B. Drummond, Anna L. Meenan, and Ina May Gaskin

In 1999, Joseph Bruner, Susan B. Drummond, Anna L. Meenan, and Ina May Gaskin published, “All-fours Maneuver for Reducing Shoulder Dystocia During Labor,” in the medical journal, Obstetrical and Gynecological Survey. In the article, the authors described a birthing technique named the all-fours maneuver, or the Gaskin maneuver, and explained its effectiveness in treating fetal shoulder dystocia as compared to other maneuvers.

Format: Articles

Subject: Publications, Processes

The Role of the Notch Signaling Pathway in Myogenesis

Among other functions, the Notch signaling pathway forestalls the process of myogenesis in animals. The Notch signaling pathway is a pathway in animals by which two adjacent cells within an organism use a protein named Notch to mechanically interact with each other. Myogenesis is the formation of muscle that occurs throughout an animal's development, from embryo to the end of life. The cellular precursors of skeletal muscle originate in somites that form along the dorsal side of the organism.

Format: Articles

Subject: Theories, Processes

Hedgehog Signaling Pathway

The hedgehog signaling pathway is a mechanism that directs the development of embryonic cells in animals, from invertebrates to vertebrates. The hedgehog signaling pathway is a system of genes and gene products, mostly proteins, that convert one kind of signal into another, called transduction. In 1980, Christiane Nusslein-Volhard and Eric F. Wieschaus, at the European Molecular Biology Laboratory in Heidelberg, Germany, identified several fruit fly (Drosophila melanogaster) genes.

Format: Articles

Subject: Processes