Search
Filter by Topic
- (-) Remove Processes filter Processes
- Theories (27) Apply Theories filter
- Reproduction (22) Apply Reproduction filter
- Organisms (10) Apply Organisms filter
- Publications (9) Apply Publications filter
- Technologies (9) Apply Technologies filter
- Disorders (7) Apply Disorders filter
- Ethics (5) Apply Ethics filter
- Experiments (4) Apply Experiments filter
- People (3) Apply People filter
- Organizations (1) Apply Organizations filter
Hedgehog Signaling Pathway
The hedgehog signaling pathway is a mechanism that directs the development of embryonic cells in animals, from invertebrates to vertebrates. The hedgehog signaling pathway is a system of genes and gene products, mostly proteins, that convert one kind of signal into another, called transduction. In 1980, Christiane Nusslein-Volhard and Eric F. Wieschaus, at the European Molecular Biology Laboratory in Heidelberg, Germany, identified several fruit fly (Drosophila melanogaster) genes.
Format: Articles
Subject: Processes
Biological Clocks and the Formation of Human Tooth Enamel
Tooth enamel contains relics of its formation process, in the form of microstructures, which indicate the incremental way in which it forms. These microstructures, called cross-striations and striae of Retzius, develop as enamel-forming cells called ameloblasts, whcih cyclically deposit enamel on developing teeth in accordance with two different biological clocks. Cross-striations result from a twenty-four hour cycle, called a Circadian rhythm, in the enamel deposition process, while striae of Retzius have a longer periodicity.
Format: Articles
Subject: Processes
Ectopic Pregnancy
Many difficulties can arise with a pregnancy even after the sperm successfully fertilizes the oocyte. A major problem occurs if the fertilized egg tries to implant before reaching its normal implantation site, the uterus. An ectopic pregnancy occurs when a fertilized egg implants anywhere other than in the uterus, most commonly in the fallopian tubes. Ectopic pregnancies cannot continue to term, so a physician must remove the developing embryo as early as possible.
Format: Articles
Subject: Disorders, Processes, Reproduction
Chemical Induction
Research in chemical induction seeks to identify the compound or compounds responsible for differentiation in a developing embryo. Soren Lovtrup compared the search for these compounds to the search for the philosopher's stone. It was based on the assumption that the differentiating agents have to be chemical substances either within cells or in the extracellular matrix.
Format: Articles
Subject: Processes
Reassessment of Carrel's Immortal Tissue Culture Experiments
In the 1910s, Alexis Carrel, a French surgeon and biologist, concluded that cells are intrinsically immortal. His claim was based on chick-heart tissue cultures in his laboratory that seemed to be able to proliferate forever. Carrel's ideas about cellular immortality convinced his many contemporaries that cells could be maintained indefinitely. In the 1960s, however, Carrel's thesis about cell immortality was put into question by the discovery that human diploid cells can only proliferate for a finite period.
Format: Articles
Hartsoeker's Homunculus Sketch from Essai de Dioptrique
This embryology image is a pencil sketch by Nicolaas Hartsoeker, published as part of his 1694 French-language paper entitled Essai de Dioptrique, a semi-speculative work describing the sorts of new scientific observations that could be done using magnifying lenses. Dioptrique was published in Paris by the publishing house of Jean Anisson. The image depicts a curled up infant-like human, now referred to as a homunculus, inside the head of a sperm cell.
Format: Articles
James G. Wilson's Six Principles of Teratology
James Graves Wilson's six principles of teratology, published in 1959, guide research on teratogenic agents and their effects on developing organisms. Wilson's six principles were inspired by Gabriel Madeleine Camille Dareste's five principles of experimental teratology published in 1877. Teratology is the study of birth defects, and a teratogen is something that either induces or amplifies abnormal embryonic or fetal development and causes birth defects.
Format: Articles
Subject: Processes, Reproduction
The Role of the Notch signaling pathway in Somitogenesis
Among other functions, the Notch signaling pathway contributes to the development of somites in animals. It involves a cell signaling mechanism with a wide range of functions, including cellular differentiation, and the formation of the embryonic structures (embryogenesis). All multicellular animals use Notch signaling, which is involved in the development, maintenance, and regeneration of a range of tissues. The Notch signaling pathways spans two cells, and consists of receptor proteins, which cross one cell's membrane and interacts with proteins on adjacent cells, called ligands.
Format: Articles
Abortion
Abortion is the removal of the embryo or fetus from the womb, before birth can occur-either naturally or by induced labor. Prenatal development occurs in three stages: the zygote, or fertilized egg; the embryo, from post-conception to eight weeks; and the fetus, from eight weeks after conception until the baby is born. After abortion, the infant does not and cannot live. Spontaneous abortion is the loss of the infant naturally or accidentally, without the will of the mother. It is more commonly referred to as miscarriage.
Format: Articles
Subject: Processes, Ethics, Reproduction
Amniocentesis Prior to 1980
The extraembryonic membranes that surround and originate from the embryos of vertebrates such as birds, reptiles, and mammals are crucial to their development. They are integral to increasing the surface area of the uterus, forming the chorion (which in turn produces the placenta) and the amnion, respectively. The amnion will ultimately surround the embryo in a fluid-filled amniotic cavity. This amniotic fluid, which cushions and protects the fetus and helps prevent the onset of labor, is sampled in amniocentesis to screen for genetic diseases.
Format: Articles
Subject: Processes, Reproduction
Hamburger-Hamilton Staging Series (1951)
In 1951 Viktor Hamburger and Howard Hamilton created an embryonic staging series from a combination of photographs and drawings from other researchers. The Hamburger-Hamilton stages are a sequence of images depicting 46 chronological stages in chick development. The images begin with a fertilized egg and end with a fully developed chick. The Hamburger-Hamilton staging series was produced in order to replace a previous chick staging series created in 1900. The earlier attempt lacked specific details and staged the chick embryo by using only morphological characteristics.
Format: Articles
Subject: Processes
Homeobox Genes and the Homeobox
Homeobox genes are a cluster of regulatory genes that are spatially and temporally expressed during early embryological development. They are interesting from both a developmental and evolutionary perspective since their sequences are highly conserved and shared across an enormously wide array of living taxa.
Format: Articles
Subject: Processes
Circulatory Changes at Birth
When placental mammals are born their circulatory systems undergo radical changes as the newborns are prepared for independent life. The lungs are engaged, becoming the primary source of fresh oxygen, replacing the placental barrier as a means for blood-gas exchange.
Format: Articles
Subject: Processes
"The Role of Urethra in Female Orgasm" (1950), by Ernst Gräfenberg
In 1950, physician and researcher Ernst Gräfenberg published “The Role of Urethra in Female Orgasm,” in the International Journal of Sexology. The article was one of the first to mention the area in the anterior, or front, vaginal wall colloquially called the G-spot. In the article, Gräfenberg acknowledges that many females experience problems related to sexual satisfaction, and he argues that researchers and physicians of the time did not know enough information about the anatomical mechanisms and localization of the female orgasm to help them.
Format: Articles
Subject: Publications, Reproduction, Processes
“Female Ejaculation: A Case Study” (1981), by Frank Addiego, Edwin G. Belzer Jr., Jill Comolli, William Moger, John D. Perry, and Beverly Whipple
In 1981, Frank Addiego and colleagues published “Female Ejaculation: A Case Study” in The Journal of Sex Research. In the article, the authors find that female ejaculation, or the expulsion of fluid from a female’s urethra during or before orgasm, is a legitimate phenomenon that can occur when one stimulates an area in the vaginal wall that the team names the Gräfenberg-spot. According to the authors, at the time of publication, many individuals believed that if a female expelled fluid during orgasm, the fluid was urine and, thus, improper bladder control caused the expulsions.
Format: Articles
Subject: Publications, Processes, Reproduction
The Use of Morphine and Scopolamine to Induce Twilight Sleep
In 1907, researchers Bernhardt Kronig and Carl Gauss combined the drugs morphine and scopolamine to induce twilight sleep in women during childbirth. Physicians in the early twentieth century in Germany used twilight sleep, Dammerschlaf, to cause women to enter a state of consciousness in which they felt no pain and did not remember giving birth. Twilight sleep was associated with increased use of forceps during delivery, prolonged labor, and increased risk of infant suffocation.
Format: Articles
Subject: Processes
Breast Augmentation Techniques
Breast augmentation involves the use of implants or fat tissue to increase patient breast size. As of 2019, breast augmentation is the most popular surgical cosmetic procedure in the United States, with annual patient numbers increasing by 41 percent since the year 2000. Since the first documented breast augmentation by surgeon Vincenz Czerny in 1895, and later the invention of the silicone breast implant in 1963, surgeons have developed the procedure into its own specialized field of surgery, creating various operating techniques for different results.
Format: Articles
Subject: Technologies, Processes, Reproduction, Ethics
A Fate Map of the Chick Embryo
A 3-D fate map of the chicken (Gallus gallus) embryo with the prospective point of ingression and yolk. The area where the primitive streak will form during gastrulation is shown. The anterior- posterior axis is shown by labeling the anterior and posterio ends (A) and (P). Different colors indicate prospective fates of different regions of the epiblast after gastrulation.
Format: Graphics
The Blastoderm in Chicks During Early Gastrulation
This image shows a chicken (Gallus gallus) embryo undergoing gastrulation in stage four (18-19 hrs after laying) according to the Hamburger-Hamilton staging series. At this point in time the chicken embryo is a blastoderm (shown in blue). The first magnification of the embryo shows that the blastoderm cell layers have thickened to form the primitive streak and Hensen's node. The primitive streak extends from the posterior (P) region to the anterior (A) region. The second rectangular magnification shows the blastoderm cross-sectioned through the primitive streak.
Format: Graphics
Estrogen
The figure depicts three different molecular structures of estrogen found in mammals’ that differ by the arrangement of bonds and side groups. The molecular structures of the three estrogen molecules differ by the arrangement of chemical bonds and side groups attached to the core steroid structure, cholesterol, which contains three cyclohexane rings and one cyclopentane ring.
Format: Graphics
Subject: Theories, Processes, Reproduction
Mitochondria
Mitochondria are organelles found in the cytoplasm of eukaryotic cells. They are composed of an outer membrane and an inner membrane. The outer membrane faces the cellular cytoplasm, while the inner membrane folds back on itself multiple times, forming inner folds, called cristae. The space between the two membrane layers is called the intermembrane space, and the space within the inner membrane is called the matrix.
Format: Graphics
Jelly Fish and Green Fluorescent Protein
The crystal jellyfish, Aequorea victoria, produces and emits light, called bioluminescence. Its DNA codes for sequence of 238 amino acids that forms a protein called Green Fluorescent Protein (GFP). FP is folded so that a part of the protein, called the chromophore, is located in the center of the protein. The chemical structure of the chromophore emits a green fluorescence when exposed to light in the range of blue to ultraviolet.
Format: Graphics
Subject: Theories, Processes, Organisms, Technologies
DNA and X and Y Chromosomes
Y-chromosomes exist in the body cells of many kinds of male animals. Found in the nucleus of most living animal cells, the X and Y-chromosomes are condensed structures made of DNA wrapped around proteins called histones. The individual histones bunch into groups that the coiled DNA wraps around called a nucleosome, which are roughly 10 nano-meters (nm) across. The histones bunch together to form a helical fiber (30 nm) that spins into a supercoil (200 nm). During much of a cell's life, DNA exists in the 200 nm supercoil phase.
Format: Graphics
Chloroplasts
Chloroplasts are the organelles in plant and algal cells that conduct photosynthesis. A single chloroplast has an outer membrane and an inner membrane, with an intermembrane space in between. Within the inner membrane, interconnected stacks of thylakoids, called granum, float in a protein rich fluid called the stroma. These thylakoid stacks contain chlorophyll, a pigment which converts sunlight into usable energy for plants and free oxygen from water. The stacks are sites of light reactions within a plant cell.
Format: Graphics
Neurospora crassa Life Cycle
This diagram shows the life cycle of Neurospora crassa, a mold that grows on bread. N. crassa can reproduce through an asexual cycle or a sexual cycle. The asexual cycle (colored as a purple circle), begins in this figure with (1a) vegetative mycelium, which are strands of mature fungus. Some of the strands form bulbs (2a) in a process called conidiation. From those bulbs develop the conidia, which are spores. Next, (3a) a single conidium separates from its strand and elongates until it forms mycelium.
Format: Graphics