Search

Displaying 251 - 275 of 1058 items.

Rosalind Elsie Franklin (1920-1958)

Rosalind Elsie Franklin worked with X-ray crystallography at King's College London, UK, and she helped determine the helical structure of DNA in the early 1950s. Franklin's research helped establish molecular genetics, a field that investigates how heredity works on the molecular level. The discovery of the structure of DNA also made future research possible into the molecular basis of embryonic development, genetic disorders, and gene manipulation.

Format: Articles

Subject: People

Exchange Transfusion for Jaundiced Newborns in the United States

Exchange transfusion is the replacement of blood from newborn infants with elevated bilirubin level in their blood stream with donor blood containing normal bilirubin levels. Newborn infants that experience jaundice, the yellowing of the skin and eyes, have a buildup of bilirubin, a chemical that occurs during red blood cell breakdown, or hemolysis. Exchange transfusion is a therapy developed throughout the 1940s by Louis Diamond and a group of surgeons at the Children’s Medical Center in Boston, Massachusetts.

Format: Articles

Subject: Technologies

The Role of the Notch Signaling Pathway in Myogenesis

Among other functions, the Notch signaling pathway forestalls the process of myogenesis in animals. The Notch signaling pathway is a pathway in animals by which two adjacent cells within an organism use a protein named Notch to mechanically interact with each other. Myogenesis is the formation of muscle that occurs throughout an animal's development, from embryo to the end of life. The cellular precursors of skeletal muscle originate in somites that form along the dorsal side of the organism.

Format: Articles

Subject: Theories, Processes

Elinor Catherine Hamlin (1924- )

Elinor Catherine Hamlin founded and helped fund centers in Ethiopia to treat women affected by fistulas from obstetric complications. Obstetric fistulas develop in women who experience prolonged labor, as the pressure placed on the pelvis by the fetus during labor causes a hole, or fistula, to form between the vagina and the bladder (vesicovaginal fistula) or between the vagina and the rectum (rectovaginal fistula). Both of those conditions result in urinary or fecal incontinence, which often impacts womenÍs social status within their communities.

Format: Articles

Subject: People, Reproduction

Hamlin Fistula Ethiopia (1974- )

Hamlin Fistula Ethiopia is a nonprofit organization that began in 1974 as a joint endeavor by Reginald and Catherine Hamlin and the Addis Ababa Fistula Hospital in Addis Ababa, Ethiopia. Hamlin Fistula Ethiopia promotes reproductive health in Ethiopia by raising awareness and implementing treatment and preventive services for women affected by obstetric fistulas. It also aims to restore the lives of women afflicted with obstetric fistulas in Ethiopia and eventually to eradicate the condition.

Format: Articles

Subject: Organizations, Reproduction, Outreach

"Gene Regulation for Higher Cells: A Theory" (1969), by Roy J. Britten and Eric H. Davidson

In 1969, Roy J. Britten and Eric H. Davidson published Gene Regulation for Higher Cells: A Theory, in Science. A Theory proposes a minimal model of gene regulation, in which various types of genes interact to control the differentiation of cells through differential gene expression. Britten worked at the Carnegie Institute of Washington in Washington, D.C., while Davidson worked at the California Institute of Technology in Pasadena, California. Their paper was an early theoretical and mechanistic description of gene regulation in higher organisms.

Format: Articles

Subject: Publications

"Conservatism in Obstetrics" (1916), by Edwin B. Cragin

In 1916 Edwin B. Cragin in the United States published Conservatism in Obstetrics in which he discussed medical practices and techniques to preserve the vitality of pregnant women and their fetuses. Cragin argued that women who give birth via cesarean section, the surgical act of making an incision through both the abdomen and uterus to remove the fetus from a pregnant woman's womb, must rely on that method for future births. That claim was later coined the Dictum of Cragin.

Format: Articles

Subject: Publications

Edmund Beecher Wilson (1856-1939)

Edmund Beecher Wilson contributed to cell biology, the study of cells, in the US during the end of the nineteenth and the beginning of the twentieth centuries. His three editions of The Cell in Development and Inheritance (or Heredity) in 1896, 1900, and 1925 introduced generations of students to cell biology. In The Cell, Wilson described the evidence and theories of his time about cells and identified topics for future study. He helped show how each part of the cell works during cell division and in every step of early development of an organism.

Format: Articles

Subject: People

40 Weeks (2014)

In 2014, Big Belli, a media and social networking brand, released a documentary called 40 Weeks online. The documentary, directed by Christopher Henze, followed multiple women during their pregnancies. The film predominantly features three women, though it includes the stories of many. Throughout the film, women detail their accounts of the physical and emotional changes that occur during pregnancy.

Format: Articles

Subject: Publications

Nerve Growth Factor

Nerve growth factor (NGF) is a signaling protein and growth factor implicated in a wide range of development and maintenance functions. NGF was discovered through a series of experiments in the 1950s on the development of the chick nervous system. Since its discovery, NGF has been found to act in a variety of tissues throughout development and adulthood. It has been implicated in immune function, stress response, nerve maintenance, and in neurodegenerative diseases.

Format: Articles

Subject: Processes

Sir D'Arcy Wentworth Thompson (1860-1948)

Known by many for his wide-reaching interests and keen thinking, D'Arcy Wentworth Thompson was one of Britain's leading scientific academics in the first few decades of the twentieth century. A prodigious author, Thompson published some 300 papers, books, and articles in the biological sciences, classics, oceanography, and mathematics. He was a famous lecturer and conversationalist-a true "scholar-naturalist," as his daughter wrote in her biography of her father.

Format: Articles

Subject: People

Regeneration

Regeneration is a fascinating phenomenon. The fact that many organisms have the capacity to regenerate lost parts and even remake complete copies of themselves is difficult to fathom; so difficult, in fact, that for a very long time people were reluctant to believe regeneration actually took place. It seemed unbelievable that some organisms could re-grow lost limbs, organs, and other body parts. If only we could do the same!

Format: Articles

Subject: Processes

Julia Barlow Platt (1857-1935)

Julia Barlow Platt studied neural crests in animal embryos and became involved in politics in the US during the nineteenth and twentieth centuries. She researched how body and head segments formed in chicks (Gallus gallus) and spiny dogfish (Squalus acanthias). Platt observed that in the mudpuppy (Necturus maculosus), the coordinated migration of neural crest cells in the embryo produced parts of the nervous system, bones, and connective tissues in the head.

Format: Articles

Subject: People

Organisers and Genes (1940), by Conrad Hal Waddington

Conrad Hal Waddington's Organisers and Genes, published in 1940, is a summary of available research and theoretical framework for many concepts related to tissue differentiation in the developing embryo. The book is composed of two main conceptual sections. The first section explores the action and nature of the organizer, while the second section delves into genes and their influence on development.

Format: Articles

Subject: Publications

Alan Mathison Turing (1912-1954)

Alan Mathison Turing was a British mathematician and computer scientist who lived in the early twentieth century. Among important contributions in the field of mathematics, computer science, and philosophy, he developed a mathematical model of morphogenesis. This model describing biological growth became fundamental for research on the process of embryo development.

Format: Articles

Subject: People

What Every Mother Should Know (1914), by Margaret Sanger

What Every Mother Should Know was published in 1914 in New York City, New York, as a compilation of newspaper articles written by Margaret Sanger in 1911. The series of articles informed parents about how to teach their children about reproduction and it appeared in the newspaper New York Call. In 1911, the newspaper series was published as a book, with several subsequent editions appearing later. In What Every Mother Should Know, Sanger emphasizes starting education on reproduction early and honestly answering children’s questions.

Format: Articles

Subject: Publications

Beatrice Mintz (1922–2022)

Beatrice Mintz is a brilliant researcher who has developed techniques essential for many aspects of research on mouse development. She produced the first successful mouse chimeras and meticulously characterized their traits. She has worked with various cancers and produced viable mice from the cells of a teratoma. Mintz participated in the development of transgenic mice by the incorporation of foreign DNA into a mouse genome.

Format: Articles

Subject: People

Ian Donald (1910–1987)

Ian Donald was an obstetrician who developed the technology and therapy of ultrasound diagnostics during the twentieth century in Europe. Ultrasound is a medical diagnostic technique that uses sound waves to produce images of the inside of the body. During the early 1900s, physicians had no way to see inside a woman’s uterus during pregnancy. Donald developed the first method of scanning human internal anatomy in real time, which enabled doctors to diagnose potentially fatal tumors and cysts.

Format: Articles

Subject: People

Golgi Staining Technique

The Golgi staining technique, also called the black reaction after the stain's color, was developed in the 1870s and 1880s in Italy to make brain cells (neurons) visible under the microscope. Camillo Golgi developed the technique while working with nervous tissue, which required Golgi to examine cell structure under the microscope. Golgi improved upon existing methods of staining, enabling scientists to view entire neurons for the first time and changing the way people discussed the development and composition of the brain's cells.

Format: Articles

Subject: Technologies, Processes

Boris Ephrussi (1901-1979)

Boris Ephrussi studied fruit flies, yeast, and mouse genetics and development while working in France and the US during the twentieth century. In yeast, Ephrussi studied how mutations in the cytoplasm persisted across generations. In mice he studied the genetics of hybrids and the development of cancer. Working with George Wells Beadle on the causes of different eye colors in fruit flies, Ephrussi's research helped establish the one-gene-one-enzyme hypothesis. Ephrussi helped create new embryological techniques and contributed the theories of genetics and development.

Format: Articles

Subject: People

Edward B. Lewis (1918-2004)

Edward B. Lewis studied embryonic development in Drosophila, including the discovery of the cis-trans test for recessive genes, and the identification of the bithorax complex and its role in development in Drosophila. He shared the 1995 Nobel Prize in Physiology or Medicine with Christiane Nüsslein-Volhard and Eric F. Wieschaus for work on genetic control of early embryonic development.

Format: Articles

Subject: People

Sex-determining Region Y in Mammals

The Sex-determining Region Y (Sry in mammals but SRY in humans) is a gene found on Y chromosomes that leads to the development of male phenotypes, such as testes. The Sry gene, located on the short branch of the Y chromosome, initiates male embryonic development in the XY sex determination system. The Sry gene follows the central dogma of molecular biology; the DNA encoding the gene is transcribed into messenger RNA, which then produces a single Sry protein.

Format: Articles

Subject: Processes

Germ Layers

A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through the process of gastrulation. During gastrulation, a hollow cluster of cells called a blastula reorganizes into two primary germ layers: an inner layer, called endoderm, and an outer layer, called ectoderm.

Format: Articles

Subject: Theories, Processes

Mesoderm

Mesoderm is one of the three germ layers, groups of cells that interact early during the embryonic life of animals and from which organs and tissues form. As organs form, a process called organogenesis, mesoderm interacts with endoderm and ectoderm to give rise to the digestive tract, the heart and skeletal muscles, red blood cells, and the tubules of the kidneys, as well as a type of connective tissue called mesenchyme. All animals that have only one plane of symmetry through the body, called bilateral symmetry, form three germ layers.

Format: Articles

Subject: Processes

Barbara McClintock's Transposon Experiments in Maize (1931–1951)

Barbara McClintock conducted experiments on corn (Zea mays) in the United States in the mid-twentieth century to study the structure and function of the chromosomes in the cells. McClintock researched how genes combined in corn and proposed mechanisms for how those interactions are regulated. McClintock received the Nobel Prize in Physiology or Medicine in 1983, the first woman to win the prize without sharing it. McClintock won the award for her introduction of the concept of transposons, also called jumping genes.

Format: Articles

Subject: Experiments