

Ontogeny and Phylogeny [12] is a book published in 1977, in which the author Stephen J. Gould, who worked in the US, tells a history of the theory of recapitulation. A theory of recapitulation aims to explain the relationship between the embryonic development of an organism (ontogeny [13]) and the evolution [14] of that organism's species (phylogeny [15]). Although there are several variations of recapitulationist theories, most claim that during embryonic development an organism repeats the adult stages of organisms from those species in it's evolutionary history. Gould suggests that, although fewer biologists invoked recapitulation theories in the twentieth century compared to those in the nineteenth and eighteenth centuries, some aspects of the theory of recapitulation remained important for understanding evolution [14]. Gould notes that the concepts of acceleration [16] and retardation [17] during development entail that changes in developmental timing (heterochrony) can result in a trait appearing either earlier or later than normal in developmental processes. Gould argues that these changes in the timing of embryonic development provide the raw materials or novelties upon which natural selection [18] acts.


Gould noted that Ernst Haeckel [20] in Germany proposed an 1866 recapitulation theory [21] that he termed the biogenetic law [22], and that biologists appealed to the law into the early decades of the twentieth century, after which time experimental evidence disconfirmed the law. Gould argues that the dismissal of Haeckel's biogenetic law [22] led to a more general dismissal of the theory of recapitulation. Therefore, the bad reputation attached to the theory of recapitulation impacted the way scholars eventually theorized about developmental processes as part of the mechanism of evolution [14].

Ontogeny and Phylogeny [12] is divided into two parts. The first part is entitled "Recapitulation" and reconstructs the history of the theory of recapitulation from Greek roots to Ernst Haeckel [20]'s biogenetic law [22] and to its demise in the first half of the twentieth century. The second part is entitled "Heterochrony and Paedomorphosis." In this section, Gould proposes his own theories about the relationship between ontogeny [13] and phylogeny [15] and the way developmental processes help to explain evolution [14].

Part one of Ontogeny and Phylogeny [12] begins with chapter two, "The Analogistic Tradition from Anaximander to Bonnet". In this chapter, Gould describes pre-recapitulation theories as various ways of paralleling ontogeny [13] with the hierarchies of life. For example, some categorized the hierarchy of things as progressing from mere matter, to unconscious life, to the conscious animal, to the rational human. The ontogeny [13] of a human repeats this hierarchy. Starting from the bottom of the hierarchy, the human begins as unfomed, unconscious matter and then progresses to form complex living matter. Later in development, the human fetus [23] resembles an animal and then finally progresses to be a rational human. For instance, Aristotle [24] in ancient Greece described the sequence of development in a human embryo as analogous to a sequence of progressively higher souls unfolding inside the organism as it develops, starting with the vegetative or nutritive soul, then progressing to the animal or sensitive soul, and then finally to the human or rational soul.

Next, in the same section, Gould focuses on recapitulation theories of the sixteenth century and describes how embryologists attempted to explain ontogeny [13] through theories either of preformationism or of epigenesis [25]. Preformationists stated that structures of adults were preformed in the sex cell, and merely unfolded from prebuilt complexity. In contrast, epigenesists hypothesized that organisms began formless and subsequently increased in complexity and form during development. Gould states that historians had characterized preformationism in an attempt to retell the history of embryology [26] as a good guy (epigenesists) and bad guy (preformationists) narrative in which epigenesists triumphed. However, Gould says that preformationist theories were much more rational and respectable than historians portrayed them.

In Chapter three, entitled "Transcendental Origins, 1793 – 1860," Gould describes the triumph of epigenesis [25] over preformationism and the subsequent rise of the theory of recapitulation in the movement called Naturphilosophie [27] (philosophy of nature) in Germany during the early nineteenth century. Embryologists claimed that physical laws could explain all natural phenomena, and that motion was the only irreducible property. From these premises, recapitulation became a central theory because it relied on purely natural explanations. Gould describes in detail two contemporary leading theories of recapitulation by Lorenz Oken [28] and Johann F. Meckel, both located in Germany. Meckel stated in the title of his 1811 essay "Entwurf einer
Darstellung der zwischen dem Embryozustande der h ö heren Tiere und dem permanenten der niederer stattfindenen Parallele" (Sketch of the Portrayal of the Parallels that Exist Between the Embryonic Stages of Higher Animals and the Adults of Lower Animals) that early embryonic stages of so-called higher animals somehow related to the adult stages of lower animals. Oken, in his 1843 _Lehrbuch der Naturphilosophie_ [27] (Textbook of Natural Philosophy), classified animals based on the linear addition of organs as they developed in the animals.

Gould next discusses Karl E. von Baer, who worked on embryos in Dorpat, later Tartu, Estonia. Gould shows that von Baer argued against the theory of recapitulation. Von Baer stated that many of the features present in embryonic stages are not apparent in the adult, and therefore one could not claim any correspondence between embryos belonging to different species. Von Baer's 1828 laws of _embryology_ [26] claim that embryos of one species can only resemble the embryonic form of ancestors, but never their ancestors' adult forms. Von Baer argues that organisms from different species develop from a common general form and then diverge from one another in a branching manner as development proceeds.

Chapter four, "Evolutionary Triumph, 1859–1900", discusses the period in which Charles Darwin [28] introduced the theory of _evolution_ [14]. Before this theory, biologists struggled to explain the patterns described in Meckel's _recapitulation theory_ [21]. The claim that life evolved from a common ancestor enabled biologists to view embryonic stages of animals as the actual product of those animals' ancestors. Scientists developed at least two interpretations of the relationship between _ontogeny_ [13] and _phylogeny_ [16]. First, some biologists interpreted _evolution_ [14] with von Baer's laws of _embryology_ [20]. This interpretation described development as progressing from the general characters of a large group to the specialized characteristics of that organism's species. The second interpretation described embryonic stages as the adult forms of our ancestors. Gould notes that Darwin's embryological arguments for _evolution_ [14] in _Origin of Species_ relied on von Baer's laws.

Gould then describes how the second interpretation presupposed two claims. First, evolutionary changes must occur through the addition of traits to the end of _ontogeny_ [13], a claim called the principle of terminal addition. Second, there must be a mechanism that shortens _ontogeny_ [13] across generations, otherwise development would be much longer than what we observe today, a claim called the principle of condensation. In the latter half of the nineteenth century, many theories attempted to explain how terminal addition and condensation occurred.

In the last part of chapter four, Gould discusses Ernst Haeckel [20]'s theory of recapitulation, which had an evolutionary perspective. Evolutionary recapitulation differed from other forms of recapitulation as it integrates the theory of common ancestry for all organisms. Haeckel aimed to reconstruct phylogenetic lineages of organisms and used the parallels between _ontogeny_ [13] and _phylogeny_ [16] as evidence for his hypothesized lineages. Haeckel's _biogenetic law_ [29] claimed that _phylogeny_ [15], which is the _evolution_ [14] and diversification of a species, physically caused the embryonic stages in animals' development. Moreover, Haeckel addressed the principles of terminal addition and condensation as the mechanics of recapitulation. Gould emphasizes how other biologists such as Edward D. Cope and Alpheus Hyatt, both in the US, independently proposed the _biogenetic law_ [22]. All of them proposed similar principles and laws of _acceleration_ [16] and _retardation_ [17]. Gould ends chapter four describing how by the late nineteenth century, von Baer's _laws_ [30] of _embryology_ [26] fared poorly amongst scientists, whereas Haeckel's _biogenetic law_ [22] gained popularity.

Chapter five, "Pervasive Influence," provides excerpts from doctors, poets, writers, physicists, and educators who wrote about recapitulation. Gould speculates that recapitulation was not just influential to evolutionary and developmental biologists, but also to much of society.

In "Decline, Fall, and Generalization," Gould describes the decline of the _biogenetic law_ [22] in the first half of the twentieth century, and he identifies several factors influencing the decline. First, he notes that the empirical critiques addressing _acceleration_ [16] and _retardation_ [17] made the _biogenetic law_ [22] untenable. Then, Gould says that in the 1920s Walter Garstang [25], in the UK, emphasized a contradiction in the _biogenetic law_ [22]: that late stages of development sometimes retain the juvenile characters of the ancestors. Garstang called this phenomena paedomorphisis, and he described its occurrence in the salamanders from Mexico. Garstang argued that, as the biogenetic law required that adult stages of ancestors appear in the juvenile stages of development, it was disconfirmed by evidence of juvenile features of ancestors expressed in the adult forms of organisms. Additionally, Gould notes the difficulties that arose for the biogenetic law once Gregor Mendel's 1865 theory of genetics and experimental _embryology_ [29] became popular. According to Gould, once new causal explanations accounted for variations in the features of organisms within the same species, the _biogenetic law_ [22] became irrelevant.

Section two of _Ontogeny and Phylogeny_ [12] has four chapters. The first two chapters in this section, chapters seven and eight in the book, are entitled "Heterochrony and the Parallel of Ontogeny and Phylogeny" and "The Ecological and Evolutionary Significance of Heterochrony". In these chapters, Gould emphasizes the mechanics of developmental timing rather than the results of those processes. He argues that, once Haeckel's _biogenetic law_ [22] declined in popularity, it prompted the design of many complex theories about the connections between _ontogeny_ [19] and _phylogeny_ [16], theories that focused on the results of changes in developmental timing, recapitulation and _paedomorphosis_ [23], but did not focus on its mechanisms, _acceleration_ [16] and _retardation_ [17].

Gould argues that scientists should study the processes of developmental timing. He identifies two processes causing recapitulation and _paedomorphosis_ [23]; _acceleration_ [16] and _retardation_ [17] of development. Furthermore, the ubiquitous presence
of these processes in development shows that heterochrony constitutes the mechanics of evolution, as it can result in different evolutionary phenomena such as the number of offspring an organism has or the age at which an organism reproduces.

In "Progenesis and Neoteny" and "Human Evolution," Gould explains progenesis and neoteny. Progenesis occurs when the sexual maturation of an organism still in a juvenile stage accelerates. For example, some salamanders are able to reproduce during their larval life. Gould argues that neoteny and progenesis are adaptations to different ecological environments. Progenesis enables species to reproduce quickly and in large numbers. Neoteny, on the other hand, causes species to reproduce slowly and in small numbers. Progenesis can result in the evolution of new taxa, because it can relax the developmental constraints that later arise in the development of organisms. Gould points to neoteny as an important process in the development of complex social and cerebral behavior in the higher vertebrates. He says that the ability for an organism to delay its growth can lead to features that would support complex social and cerebral behaviors. For instance, rapid growth of the brain later in the development of humans could support complex cerebral functions. Gould claims that neoteny is the most important factor of human evolution.

In the decades that followed its publication, Ontogeny and Phylogeny became widely cited within the evolutionary and developmental sciences. It helped revive research on acceleration and retardation and sparked research about paedomorphosis as a possible factor affecting the evolution of the human lineage. Moreover, Ontogeny and Phylogeny, along with other work by Gould, such as "The Spandrels of San Marco and the Panglossian Paradigm" is often credited for influencing the rise of a biological approach called evolutionary developmental biology or evo-devo, which worked to integrate evolutionary and developmental biology.

Sources

development of an organism (ontogeny) and the evolution of that organism's species (phylogeny). Although there are several variations of recapitulationist theories, most claim that during embryonic development an organism repeats the adult stages of organisms from those species in its evolutionary history. Gould suggests that, although fewer biologists invoked recapitulation theories in the twentieth century compared to those in the nineteenth and eighteenth centuries, some aspects of the theory of recapitulation remained important for understanding evolution. Gould notes that the concepts of acceleration and retardation during development entail that changes in developmental timing (heterochrony) can result in a trait appearing either earlier or later than normal in developmental processes. Gould argues that these changes in the timing of embryonic development provide the raw materials or novelties upon which natural selection acts.

Subject

Topic
Publications [62]

Publisher
Arizona State University. School of Life Sciences. Center for Biology and Society. Embryo Project Encyclopedia.

Rights
Copyright Arizona Board of Regents Licensed as Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported (CC BY-NC-SA 3.0) http://creativecommons.org/licenses/by-nc-sa/3.0/

Format
Articles [63]

Last Modified
Tuesday, July 3, 2018 - 21:40

DC Date Accessed
Tuesday, October 21, 2014 - 23:50

DC Date Available
Tuesday, October 21, 2014 - 23:50

DC Date Created
2014-10-21

- Contact Us

© 2021 Arizona Board of Regents
- The Embryo Project at Arizona State University, 1711 South Rural Road, Tempe Arizona 85287, United States

Source URL: https://embryo.asu.edu/pages/ontogeny-and-phylogeny-1977-stephen-jay-gould

Links
[3] https://embryo.asu.edu/keywords/neoteny
[8] https://embryo.asu.edu/keywords/heterochrony
[9] https://embryo.asu.edu/keywords/biogenetic-law
[10] https://embryo.asu.edu/keywords/evo-devo