Meiosis in Humans [1]

By: Maayan, Inbar Keywords: Human development [2] Meiosis [3]

Meiosis, the process by which sexually reproducing organisms generate gametes (sex cells), is an essential precondition for the normal formation of the embryo. As sexually-reproducing, diploid, multicellular eukaryotes, humans [5] rely on meiosis [6] to serve a number of important functions, including the promotion of genetic diversity and the creation of proper conditions for reproductive success. However, the primary function of meiosis [6] is the reduction [7] of the ploidy [8] (number of chromosomes) of the gametes from diploid (2n, or two sets of 23 chromosomes) to haploid (1n or one set of 23 chromosomes). While parts of meiosis [6] are similar to mitotic processes, the two systems of cellular division produce distinctly different outcomes. Problems during meiosis [6] can stop embryonic development and sometimes cause spontaneous miscarriages, genetic errors, and birth defects [9] such as Down syndrome [10].

The process of meiosis [6] was first described in the mid-1870s by Oscar Hertwig, who observed it while working with sea urchin [11] eggs. Edouard Van Beneden expanded upon Hertwig’s descriptions, adding his observations about the movements of the individual chromosomes within the germ cells [12]. However, it wasn’t until August Weismann’s work in 1890 that the reduction [7] role that meiosis [6] played was recognized and understood as essential. Some twenty years later, in 1911, Thomas Hunt Morgan [13] examined meiosis [6] in Drosophila [14], which enabled him to present evidence of the crossing over of the chromosomes.

Both males and females use meiosis [6] to produce their gametes, although there are some key differences between the sexes at certain stages. In females, the process of meiosis [6] is called oogenesis, since it produces oocytes and ultimately yields mature ova(eggs). The male counterpart is spermatogenesis, the production of sperm [15]. While they occur at different times and different locations depending on the sex, both processes begin meiosis [6] essentially the same way.

Meiosis occurs in the primordial germ cells [12], cells specified for sexual reproduction and separate from the body’s normal somatic cells. In preparation for meiosis [6], a germ cell goes through interphase, during which the entire cell (including the genetic material contained in the nucleus [16]) undergoes replication. In order to undergo replication during interphase, the DNA (deoxyribonucleic acid, the carrier of genetic information and developmental instructions) is unraveled in the form of chromatin [17]. While replicating somatic cells follow interphase with mitosis [18], germ cells [12] instead undergo meiosis [6]. For clarity, the process is artificially divided into stages and steps; in reality, it is continuous and the steps generally overlap at transitions.

The two-stage process of meiosis [6] begins with meiosis [6] I, also known as reduction [7] division since it reduces the diploid number of chromosomes in each daughter cell by half. This first step is further subdivided into four main stages: prophase I, metaphase I, anaphase I, and telophase I. Each stage is identified by the major characteristic events in its span which allow the dividing cell to progress toward the completion of meiosis [6]. Prophase I takes up the greatest amount of time, especially in oogenesis. The dividing cell may spend more than 90 percent of meiosis [6] in Prophase I. Because this particular step includes so many events, it is further subdivided into six substages, the first of which is leptotene. During leptotene, the diffuse chromatin [17] starts condensing into chromosomes. Each of these chromosomes is double stranded, consisting of two identical sister chromatids which are held together by a centromere; this arrangement will later give each chromosome a variation on an X-like shape, depending on the positioning of the centromere. Leptotene is also the point at which each chromosome begins to “search” for its homologue (the other chromosome of the same shape and size that contains the same genetic material).

In the next substage, zygonema, there is further condensation of the chromosomes. The homologous chromosomes (matching chromosomes, one from each set) “find” each other and align in a process called rough pairing. As they come into closer contact, a protein compound called the synaptonemal complex forms between each pair of double-stranded chromosomes.

As Prophase I continues into its next substage, pachynema, the homologous chromosomes move even closer to each other as the synaptonemal complex becomes more intricate and developed. This process is called synopsis, and the synapsed chromosomes are called a tetrad. The tetrad is composed of four chromatids which make up the two homologous chromosomes. During pachynema and the next substage, diplonema, certain regions of synapsed chromosomes often become closely associated and swap corresponding segments of the DNA in a process known as chiasma. At this point, while still associated at the chiasmata, the sister chromatids start to part from each other (although they are still firmly bound at the centromere; this creates the X-shape commonly associated with condensed chromosomes).

The nuclear membrane starts to dissolve by the end of diplonema and the chromosomes complete their condensation in preparation for the last substage of prophase I, diakinesis. During this part, the chiasmata terminalize (move toward the ends of their respective chromatids) and drift further apart, with each chromatid now bearing some newly-acquired genetic material as the result of crossing over. Simultaneously, the centrioles, pairs of cylindrical microtubular organelles, move to opposite poles and the region containing them becomes the source for spindle fibers. These spindle fibers anchor onto the kinetochore, a
Meiosis is a process that is conserved, in one form or another, across all sexually-reproducing organisms. This means that the genetic material is distributed to the next generation in a manner that is optimal for the survival and reproduction of the species. Meiosis is a type of cell division that reduces the chromosome number by half, from the diploid number (2N) in somatic cells to the haploid number (N) in gametes. This process involves two rounds of cell division: meiosis I and meiosis II. The outcome is four haploid daughter cells, each with a unique combination of maternal and paternal chromosomes.

During meiosis I, the first round of cell division, the maternal and paternal homologous chromosomes align at the metaphase plate. The process is powered by the mitotic apparatus, which includes the centrioles that position the metaphase plate and the kinetochores that attach the chromosomes to the spindle fibers. The spindle fibers consist of microtubules that contract and pull the chromosomes to opposite poles of the cell. This process is regulated by the spindle checkpoint, which ensures that all chromosomes are properly attached to spindle fibers and microtubules before the cell divides.

Meiosis II, the second round of cell division, occurs in the absence of DNA replication. The process is similar to mitosis, but with some important differences. The chromosomes are already halved, with each chromosome now consisting of a single chromatid. The cell then undergoes a second round of nuclear division, resulting in the production of four haploid daughter cells, each with a unique combination of maternal and paternal chromosomes.

These daughter cells are then released into the environment, where they may undergo fertilization to form a new individual. Fertilization is the process by which a sperm cell fertilizes an egg cell, resulting in the formation of a new diploid zygote cell. Fertilization is a critical step in the life cycle of sexually reproducing organisms, as it ensures that the genetic material is transmitted from one generation to the next.

Sources

Meiosis, the process by which sexually-reproducing organisms generate gametes (sex cells), is an essential precondition for the normal formation of the embryo. As sexually reproducing, diploid, multicellular eukaryotes, humans rely on meiosis to serve a number of important functions, including the promotion of genetic diversity and the creation of proper conditions for reproductive success. However, the primary function of meiosis is the reduction of the ploidy (number of chromosomes) of the gametes from diploid (2n, or two sets of 23 chromosomes) to haploid (1n or one set of 23 chromosomes). While parts of meiosis are similar to mitotic processes, the two systems of cellular division produce distinctly different outcomes. Problems during meiosis can stop embryonic development and sometimes cause spontaneous miscarriages, genetic errors, and birth defects such as Down syndrome.