Julia Barlow Platt (1857-1935) [1]

By: Ramírez, Karina Keywords: Julia Platt [2] Germ layers [3]

Julia Barlow Platt studied neural crests in animal embryos and became involved in politics in the US during the nineteenth and twentieth centuries. She researched how body and head segments formed in chicks (Gallus gallus [4]) and spiny dogfish (Squalus acanthias [5]). Platt observed that in the mudpuppy (Necturus maculosus [6]), the coordinated migration of neural crest cells [7] in the embryo produced parts of the nervous system, bones, and connective tissues in the head. Platt's research indicated that the neural crest [8] functioned like a germ layer, it challenged existing theories of what sorts of tissues arose from each of an embryo's germ layers [9], and it described early developmental stages [10] of the nervous system.

Platt was born on 14 September 1857 in San Francisco, California, to Ellen Loomis Barlow and George King Platt. Her father, a lawyer and state attorney in Vermont in the 1840s, died nine days after her birth and her mother raised her in Burlington, Vermont. Platt began her scientific career in 1879 at the University of Vermont in Burlington, where she received a Bachelor's degree in three years. In 1887 she started her graduate studies at Harvard University in Cambridge, Massachusetts, where she researched chick [11] embryo segmentation [12] under the supervision of Howard Ayers, who studied the development of the head and body segmentation [13] in different organisms. At Harvard, Platt published her first paper in 1889. In that paper, Platt studied the formation of embryonic structures called somites [13] in the chick [11] embryo, which give rise to the vertebrae and to other tissues. Into the 1990s, scientists used the plates she had made for her 1889 paper and her description of axial segmentation [12] in chick [11] embryos to identify chick [11] developmental stages [10].

Platt pursued her graduate career at different institutions because many universities in the United States and Europe didn't grant graduate degrees to women. During the nineteenth century, universities in Germany were among the few places where women could obtain a doctoral degree. In the summer of 1889 and 1890, Platt conducted research at the Marine Biological Laboratory [14] in Woods Hole, Massachusetts, with director Charles Otis Whitman [15], who studied zoology and became a mentor to Platt. During those years, when she was not at the Marine Biological Laboratory [14] Platt attended Bryn Mawr College in Lower Merion Township, Pennsylvania. Also in 1890, Platt continued her research on head segmentation [12] at the Albert Ludwig University of Freiburg [16] in Freiburg, Germany, and in 1891 she worked for a few months at the Stazione Zoologica [17] in Naples, Italy, upon Whitman's recommendation.

During the winter of 1892 and into 1893, Platt went to the University of Chicago [18] in Chicago, Illinois, where she worked again with Whitman, who had become the first chair of the zoology department at the university. In Chicago, Platt published two preliminary notes about her research on the ectodermal origin of head cartilage in Necturus. In 1893, Platt returned to Germany to study at the Ludwig Maximilian University of Munich [19] in Munich, Germany, where she spent three semesters and continued the work she had begun at the University of Chicago [18]. In Munich, Platt worked with Karl Wilhelm von Kupffer, at that time director of the Institute for Anatomy. Platt later spent two semesters at Radcliffe College in Cambridge, Massachusetts, where she attended lectures on comparative anatomy and experimental morphology [20]. In 1897, she returned to the University of Freiburg, from which she received her PhD in zoology on 28 May 1898. She became the second woman who received a doctorate from that institution. Platt completed her graduate career after nine years during which she published eleven papers, traveled constantly, and interacted with many biologists.

In her publications, Platt described how the head cartilage, the dentine that forms teeth, and some nervous tissues, develop from the ectoderm [21] germ layer. At that time, scientists maintained that the head cartilage developed from the mesoderm [22]. The germ layer theory postulated that the three germ layers [9] in the embryo, ectoderm [21], mesoderm [22], and endoderm [23], give rise to different types of cells in the adult. In 1817, Christian Pander had proposed the germ layer theory based on his studies of chick [11] embryos. Pander had claimed that cells had their roles in the body specified in the different layers of the embryo. Karl Ernst von Baer [24] contributed to the germ layer theory by proposing that, in animals of different species, tissues and organs of shared evolutionary origin developed from the same germ layer and only one of the germ layers [9] is associated with any given structure. That thesis was called germ layer specificity. Some scientists had expressed skepticism about germ layer specificity, but most scientists still accepted the theory in the 1890s, during Platt's career.

Consequently, Platt's research was not well-received because her results did not fit in with the germ layer specificity hypothesis, which stated that cartilage and dentine were associated with mesoderm [22], along with all skeletal, vascular, muscular, and connective tissue. However, Platt's results convinced some of her colleagues who later helped promote her work. One such
Sources

Julia Barlow Platt studied neural crests in animal embryos and became involved in politics in the US during the nineteenth and twentieth centuries. She researched how body and head segments formed in chicks (Gallus gallus) and spiny dogfish (Squalus acanthias). Platt observed that in the mudpuppy (Necturus maculosus), the coordinated migration of neural crest cells in the embryo produced parts of the nervous system, bones, and connective tissues in the head. Platt's research indicated that the neural crest functioned like a germ layer, it challenged existing theories of what sorts of tissues arose from each of an embryo’s germ layers, and it described early developmental stages of the nervous system.

Subject
- Dogfish
- Neural crest
- Nervous system
- University of Vermont
- Marine Biological Laboratory
- Whitman, Charles Otis, 1842-1910
- Stazione zoologica di Napoli
- University of Chicago
- Cartilage
- Pander, Christian Heinrich, 1794-1865
- Germ Layers
- Ectoderm
- Neural Crest

Topic
- People

Publisher
Arizona State University. School of Life Sciences. Center for Biology and Society. Embryo Project Encyclopedia.

Rights
Copyright Arizona Board of Regents Licensed as Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported (CC BY-NC-SA 3.0) http://creativecommons.org/licenses/by-nc-sa/3.0/

Format
- Articles

Last Modified
Wednesday, July 4, 2018 - 04:40