Endoderm

By: MacCord, Keynes: endoderm

Endoderm is one of the germ layers—aggregates of cells that organize during early embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation [4]. During gastrulation [4], a ball of cells transforms into a two-layered embryo made of an inner layer endoderm [3] and an outer layer of ectoderm [2]. In more complex organisms, like vertebrates, these two primary germ layers induct to give rise to a third germ layer, called mesoderm [7]. Regardless of the presence of two or three layers, endoderm is always the inner-most layer. Endoderm forms the epithelium—a type of tissue in which the cells are tightly linked together to form sheets—that lines the primitive gut. From this epithelial lining of the primitive gut, all major tissues of the future digestive tract, liver, pancreas, and lungs develop.

Throughout the early stages of gastrulation [3], a group of cells called mesendoderm expresses sets of both endoderm [4] and mesoderm [1], depending upon their position among surrounding cells. Scientists have found mesoderm is widespread among invertebrates, including the nematode Caenorhabditis elegans [21], and the purple sea urchin, Strongylocentrotus purpuratus [22]. Within vertebrates, mesoderm has been found in the zebrafish Danio rerio [23], and has been indicated in mice, Mus musculus [24].

Endoderm, along with the other two germ layers [4], was discovered in 1817 by Christian Pander, a doctoral student at the University of Würzburg [25], in Würzburg, Germany. In his dissertation Beiträge zur Entwicklungsgeschichte des Hühnchens im Ei (Contributions to the Developmental History of the Chicken in the Egg) Pander described how two layers give rise to a third in the chick [26] (Gallus gallus domesticus). Pander mapped the divisions and subsequent specialization of the cells in the embryo of an ascidian, or sea squirt, a type of marine invertebrate that develops a tough outer layer and clings to the sea floor. By creating a plot, or fate map, of the developmental route of each of the cells, Conklin located the precursor cells, traced the formation of each of the germ layers [27], and showed that even at very early stages of development, the ability of some cells to differentiate becomes restricted.

Conklin’s fate mapping [28] experiments, along with questions about the capacity of cells to differentiate, influenced scientists like Robert Briggs, abrida University [29] in Bloomington, Indiana, and his collaborator, Thomas King, at the Institute for Cancer Research [30] in Philadelphia, Pennsylvania. In the 1950s Briggs and King began a series of experiments to test the developmental capacity of cells and embryos. In 1957 Briggs and King transplanted nuclei from the presumptive endoderm [31] of the northern leopard frog [32] (Rana pipiens), into eggs from which they had removed the nucleus. This technique, which Briggs and King developed called, called nuclear transplantation [33], allowed them to explore the timing of cell differentiation [34], and the technique became a basis for future experiments in cloning [35]. From their nuclear transplantation [36] experiments, Briggs and King found that during endodermal differentiation [37], the ability of the nucleus [38] to help cells specialize becomes progressively restricted. That result was supported in 1960 by the work of John Gurdon [39], at Oxford University in Oxford, England. Gurdon recreated Briggs and King’s experiments using the African clawed Xenopus laevis [40], and found that there are significant differences between species in the rate and timing of onset of these endodermal restrictions.

While Briggs, King, and Gurdon worked to understand the restriction of endodermal cell fates, other scientists, like Pieter Nieuwkoop, at the Royal Netherlands Academy of Arts and Science, in Utrecht, Holland, investigated the formation of the germ layers [41]. In 1959 Nieuwkoop published an article, “The Formation of the Mesoderm in Urodelen Amphibians. I. Induction by the Endoderm,” in which he examined the interactions of endoderm [31] and ectoderm [35]. Nieuwkoop divided embryos of the salamander [42], Ambystoma mexicanum [43], into regions of presumptive endoderm [37] and presumptive ectoderm [44], and when left to develop in isolation [45] did not form. But when he recombined the two tissues, endoderm [31] induced the formation of mesoderm [22] in adjacent regions of the ectoderm [35].

Although scientists had traced the fate of the endoderm [31], investigated the capacity of endodermal cells to differentiate, and had examined the endoderm [31] prior to the 1950s, from these studies emerged the theory that maternal signals, or Developmental effects that the mother contributes to the germ layer [46] prior to fertilization, played a critical role in the fate of the individual, as well as in the development of the organism as a whole. This theory became well established by 1960, and the techniques of nuclear transplantation and endodermal differentiation became an important tool for dissecting the molecular mechanisms underlying development [47].

In the 1960s, Eric Davidson [48], at the University of St. Petersburg, in St. Petersburg, Russia, studied invertebrates. He researched that invertebrate embryos had the same primary germ layers [31], endoderm [37] and ectoderm [35], as vertebrate embryos, and that the layers arose in the same fashion across the animal kingdom. Kovalovsky’s findings convinced many about the universality of the germ layers—a result that some scientists made a principle of germ layer theory. Germ layer theory held that each of the germ layers [49], regardless of species, gave rise to a fixed set of organs. These organs were deemed homologous across the animal kingdom, effectively uniting the Embryo Project Encyclopedia | The Embryo Project Encyclopedia

Sources

14. His, Wilhelm. Untersuchungen über die erste Anlage des Windehelferbeins: Die erste Entwicklung des Hühnchens im Ei[Studies on the first system of the vertebrate body: The first development of the
Endoderm is one of the germ layers—aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of cells transforms into a two-layered embryo made of an inner layer of endoderm and an outer layer of ectoderm. In more complex organisms, like vertebrates, these two primary germ layers interact to give rise to a third germ layer, called mesoderm. Regardless of the presence of two or three layers, endoderm is always the inner-most layer. Endoderm forms the epithelium—a type of tissue in which the cells are tightly linked together to form sheets—that lines the primitive gut. From this epithelial lining of the primitive gut, organs like the digestive tract, liver, pancreas, and lungs develop.

Subject

Topic

Processes

Publisher

Arizona State University. School of Life Sciences. Center for Biology and Society. Embryo Project Encyclopedia.

Rights

Copyright Arizona Board of Regents Licensed as Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported (CC BY-NC-SA 3.0) http://creativecommons.org/licenses/by-nc-sa/3.0/

Format

Articles

Last Modified

Wednesday, July 4, 2013 - 04:40

DC Date Accessed

Sunday, November 17, 2013 - 17:47

DC Date Available

Sunday, November 17, 2013 - 17:47

DC Date Created

2013-11-17

- Contact Us

© 2019 Arizona Board of Regents

- The Embryo Project at Arizona State University, 1711 South Rural Road, Tempe Arizona 85287, United States

Source URL

https://embryo.asu.edu/pages/endoderm

Links

[1] https://embryo.asu.edu/pages/endoderm
[2] https://embryo.asu.edu/keyw...mesendoderm
[14] https://embryo.asu.edu/search?text=University%2...%20Crzburg
[16] https://embryo.asu.edu/search?text=crayfish
[22] https://embryo.asu.edu/search?text=Edwin%20Ray%20Lankester
[23] https://embryo.asu.edu/search?text=University%20Of%20College
[25] https://embryo.asu.edu/search?text=Wilhelm%20His

Endnotes

