Ectoderm [1]

By: MacCord, Kate

Ectoderm is one of three germ layers—groups of cells that coalesce early during the embryonic life of all animals except maybe sponges, and from which organs and tissues form. As an embryo develops, a single fertilized cell progresses through multiple rounds of cell division. Eventually, the clump of cells goes through a stage called gastrulation [2], during which the embryo reorganizes itself into the three germ layers [3]: endoderm [4], ectoderm [5], and mesoderm [6]. After gastrulation [2], the embryo goes through a process called neurulation [7], which starts the development of nervous system.

During neurulation [7], ectoderm [5] differentiates into two parts. The first is the surface ectoderm [6], which gives rise to tissues on the outer surface of the body like epidermis, hair, and nails. The second is the neuroectoderm, which forms the nervous system of the embryo. The neuroectoderm further divides into the neural tube [8], which acts as the precursor for the embryo's central nervous system [9], and into the neural crest [10], a collection of mobile cells shed from the junction between the neural tube [8] and the epidermis after the neural tube [8] forms. The neural crest [10] helps form many of the bones and connective tissues of the head and face, as well as parts of the peripheral nervous system. In fishes, the neural crest [10] helps form dorsal fins, and in turtles [11] is helps from the carapace [12].

The discovery of ectoderm [5] tied to the discoveries of the other germ layers [3]. In 1817 Christian Pander, a doctoral student at the University of Würzburg [13], in Würzburg, Germany, discovered the germ layers [3] in chick [14] embryos, Gallus gallus [15]. Within his dissertation, Pander described how two layers of cells, which he dubbed the serous and mucous layers, give rise to a third layer, which he called the vascular layer. Pander thereby described the process of gastrulation [2] in the chick [14], and he brought the three layers of the embryo to the attention of the scientific community. In 1828 physician and embryologist Martin Rathke, in Prussia (later Poland), discovered cell layers in the developing crayfish [16], Astacus astacus [17], that corresponded to Pander's serous and mucous layers. Rathke's results showed that these two cell layers existed in the embryos of non-vertebrate animals.

By the end of the nineteenth century, the concepts of the germ layers [3] had become the foundation for Germ layer theory, which held that each of the germ layers [3], regardless of species, gave rise to a fixed set of organs. Many biologists deemed the germ layers [3] homologous across the animal kingdom, effectively uniting ontogeny [20] with phylogeny [21]. Germ layer theory became doctrinal in the late 1860s due to scientists like Alexander Kovalevsky at the University of St. Petersburg, in St. Petersburg, Russia, and Ernst Haeckel [23], in Germany.

Several scientists opposed Germ Layer Theory, including Edmund Beecher Wilson [25], in the United States, and Wilhelm His [26], Rudolf Albert von Kölliker [27], and brothers Oscar and Richard Hertwig, all in Germany. Most argued that the homology of the germ layers [3] across all taxa was impossible because vertebrates and invertebrates do not all have the same organs.

Widely recognized evidence to disprove germ layer theory came in 1922, from Hilde Proescholdt Mangold and her doctoral advisor, Hans Spemann [28], working at the Zoological Institute in Freiburg, Germany. Mangold transplanted ectoderm [5] harvested from the dorsal lip, the main organizing tissue of the embryo during gastrulation [8], between donor and host species of
newts. The embryos in which she had transplanted the dorsal lip developed an extra body, head, or other nervous system structure. The resultant newts indicated that the transplanted tissue had induced gastrulation \(^2\) and neurulation \(^7\) of surrounding tissue just as it would have in its parent embryo. Mangold's experiments proved that the germ layers \(^3\) lacked absolutely determined derivatives, a result that dismantled germ layer theory. Additionally, this experiment exemplified a shift in embryological methods that had occurred in the late nineteenth century. Whereas most practitioners had focused on described and compared the anatomy of different embryos, some scientists began to physically manipulate embryos to test hypotheses. These methods helped spur the growth of programs that focused on experimental embryology \(^29\) during the early twentieth century.

Following the work of Mangold and Spemann, other scientists experimented on the three germ layers \(^3\). Among these experimental embryologists was Sven Hörstadius at Uppsala University, in Uppsala, Sweden. Conducting experiments on echinoderms \(^30\), a phylum that includes sand dollars and sea urchins, Hörstadius investigated the ability of the germ layers \(^3\) to transform. Among Hörstadius' major contributions was his work on the neural crest \(^10\), which culminated in a book in 1950 titled *The Neural Crest: Its properties and derivatives in the light of experimental research.*

Wilhelm His \(^26\) at the University of Basel \(^31\), in Basel, Switzerland, had discovered neural crest \(^10\), a derivative of the neuroectoderm, in the chick \(^14\) in 1868. His noticed that as the neural tube \(^8\) closed, cells began to migrate away from midline; these cells eventually became called the neural crest \(^10\). Twenty years later scientists had begun to look for the derivatives of the neural crest \(^10\), especially in the head and nervous system. In 1893 Julia Platt, a doctoral student studying at Munich University, in Munich, Germany, published the results of her research on the ectodermal, specifically neural crest \(^10\), derivatives in the head. Based on her studies of *Necturus maculosus* \(^32\) embryos, a type of aquatic salamander \(^33\), Platt showed that the cartilage of the branchial arches and parts of the teeth developed from ectoderm \(^8\).

Few scientists acknowledged the role of neural crest \(^10\) in the formation of the skeleton until the 1940s when Hörstadius and Sven Sellman, in Sweden, and Gavin de Beer, in England, confirmed the role of neural crest \(^10\) in skeletal development. During the 1960s, researchers studied how neural crest cells \(^34\) migrate. Researchers like James Weston at Yale University \(^35\), in New Haven, Connecticut, and Malcolm Johnston, at the University of Rochester, in Rochester, New York, traced the migration of trunk and cranial neural crest \(^10\) in chick \(^14\) embryos. In the 1970s, Nicole Le Douarin, a researcher at the University of Nantes, in Nantes, France, created chimeric quail and chick \(^14\) embryos to track the migration and derivatives of the neural crest \(^10\).

As some researchers investigated the derivatives and movements of neural crest \(^10\), others examined the interactions of the different germ layers \(^3\) within the embryo. In 1969 Pieter D. Nieuwkoop, at the Royal Netherlands Academy of Arts and Science, in Utrecht, Holland, published an article that addressed the potential of endoderm \(^4\) and ectoderm \(^5\) to induce the formation of their surrounding tissues. Using embryos of the salamander \(^33\) *Ambystoma mexicanum* \(^36\), Nieuwkoop showed that when endoderm \(^4\) and ectoderm \(^5\) interact, the endoderm \(^4\) induces mesoderm \(^5\) to form within the adjacent regions of ectoderm \(^5\). His experiments also demonstrated that the establishment of the ventral and dorsal regions of the embryo, known as the polarity \(^37\) of the embryo, results from the interactions of the endoderm \(^4\) and ectoderm \(^5\).

Scientists began to research the genetic signals responsible for gastrulation \(^2\) in the mid-1980s. Families of signaling factors, such as Vg1/Nodal, Wnt, and FGF, produce proteins that help to pattern the embryo and to form the three germ layers \(^3\). In the 1990s, scientists began to show how the signals involved in gastrulation \(^2\) also function in neurulation \(^7\). In particular, researchers studied the Bone Morphogenetic Protein, or BMP, pathway. This pathway of signals helps cause tissues to differentiate during gastrulation \(^2\), with inhibition of BMP causing the ectoderm \(^8\) to differentiate into neuroectoderm, the tissue that gives rise to the nervous system. Researchers found that proteins like Chordin, Noggin, Follistatin, and Cerberus block the expression of different members of the BMP family. These BMP-inhibitors help to induce the ectoderm \(^5\) to differentiate into the central and peripheral nervous systems.

Sources

Ectoderm is one of three germ layers--groups of cells that coalesce early during the embryonic life of all animals except maybe sponges, and from which organs and tissues form. As an embryo develops, a single fertilized cell progresses through multiple rounds of cell division. Eventually, the clump of cells goes through a stage called gastrulation, during which the embryo reorganizes itself into the three germ layers: endoderm, ectoderm, and mesoderm. After gastrulation, the embryo goes through a process called neurulation, which starts the development of nervous system.

Subject