Search

Displaying 1 - 25 of 95 items.

Pages

An Atlas of Fertilization and Karyokinesis of the Ovum (1895), by Edmund Beecher Wilson

Edmund Beecher Wilson in the US published An Atlas of Fertilization and Karyokinesis of the Ovum (hereafter called An Atlas) in 1895. The book presents photographs by photographer Edward Leaming that capture stages of fertilization, the fusion of sperm and egg and early development of sea urchin (Toxopneustes variegatus) ova, or egg cell. Prior to An Atlas, no one photographed of eggcell division in clear detail. Wilson obtained high quality images of egg cells by cutting the cells into thin sections and preserving them throughout different stages of development.

Format: Articles

Subject: Publications, Reproduction

Beadle's One Gene-One Enzyme Hypothesis

Object is a digital image with two panes, one on top of the other, both of which picture the area within a cell between the nucleus and the cell membrane. The top pane represent three genes within the cell nucleus, each of which produces a distinct kind of enzyme outside of the nucleus. Those enzymes then function in three distinct kinds of metabolic reactions. The bottom pane represents the same situation, except the second gene is damaged by x-rays and can't produce its enzymes. As a result, two of the three metabolic reactions fail to happen.

Between 1934 and 1945, George Beadle developed a hypothesis that each gene within the chromosomes of organisms each produced one enzyme. Enzymes are types of proteins that can catalyze reactions inside cells, and the figure shows that each enzyme controls a stage in a series of biochemical reactions. The top box in this figure represents a normal process of enzyme production and biochemical reactions, and the bottom box shows how Beadle's experiments affected the normal biochemical process.

Format: Graphics

Subject: Theories, Processes

Nuclear Transplantation

Nuclear transplantation is a method in which the nucleus of a donor cell is relocated to a target cell that has had its nucleus removed (enucleated). Nuclear transplantation has allowed experimental embryologists to manipulate the development of an organism and to study the potential of the nucleus to direct development. Nuclear transplantation, as it was first called, was later referred to as somatic nuclear transfer or cloning.

Format: Articles

Subject: Processes

Mitochondria

Object is a digital image of a mitochondrion. There are two boxes, one atop of the other. In the top box is the mitochondrion with a scale bar that indicates that the organelle is 1 micrometer in length. The image depicts the mitochondrion�s outer membrane, which is roughly ovoid in shape and is colored a transparent orange to reveal the inner membrane within, colored red. The top left quarter of the outer membrane and the inner membrane are cut away to reveal the cristae. In the bottom box is a round animal cell, colored teal.

Mitochondria are organelles found in the cytoplasm of eukaryotic cells. They are composed of an outer membrane and an inner membrane. The outer membrane faces the cellular cytoplasm, while the inner membrane folds back on itself multiple times, forming inner folds, called cristae. The space between the two membrane layers is called the intermembrane space, and the space within the inner membrane is called the matrix.

Format: Graphics

Subject: Theories, Processes

Chloroplasts

Object is a digital image of a chloroplast. There are two boxes, one atop the other. In the top box is an image of a chloroplast, which is roughly ovoid. A scale bar indicates that the chloroplast is roughly 5 micrometers in length. The outer membrane is colored light green, and the inner membrane is a different shade of light green. The top right parts of the outer and inner membranes are cut away to reveal dozens thylakoids within, which are all dark green and look like tires. They are stacked on top of each other to form ten granums.

Chloroplasts are the organelles in plant and algal cells that conduct photosynthesis. A single chloroplast has an outer membrane and an inner membrane, with an intermembrane space in between. Within the inner membrane, interconnected stacks of thylakoids, called granum, float in a protein rich fluid called the stroma. These thylakoid stacks contain chlorophyll, a pigment which converts sunlight into usable energy for plants and free oxygen from water. The stacks are sites of light reactions within a plant cell.

Format: Graphics

Subject: Theories, Processes

Mechanism of Notch Signaling

Object is a digital image of Notch signaling between a signaling cell and a receiving cell. Labels indicate the signaling and receiving cells, nuclear membrane, Notch receptor, the ligand, a protease, a transcription factor and a repressor. The image depicts three stages involved in Notch signaling, including the binding of the ligand with the receptor, the action of the protease, and the Notch intracellular domain fragment replacing the repressor in the nucleus.

Mechanism of Notch Signaling: The image depicts a type of cell signaling, in which two animal cells interact and transmit a molecular signal from one to the other. The process results in the production of proteins, which influence the cells as they differentiate, move, and contribute to embryological development. In the membrane of the signaling cell, there is a ligand (represented by a green oval). The ligand functions to activate a change in a receptor molecule. In the receiving cell, there are receptors; in this case, Notch proteins (represented by orange forks).

Format: Graphics

Somatic Cell Nuclear Transfer in Mammals (1938-2013)

In the second half of the
twentieth century, scientists learned how to clone organisms in some
species of mammals. Scientists have applied somatic cell nuclear transfer to clone human and
mammalian embryos as a means to produce stem cells for laboratory
and medical use. Somatic cell nuclear transfer (SCNT) is a technology applied in cloning, stem cell
research and regenerative medicine. Somatic cells are cells that
have gone through the differentiation process and are not germ
cells. Somatic cells donate their nuclei, which scientists

Format: Articles

Subject: Theories, Technologies, Processes

The Roslin Institute (1993- )

The Roslin Institute was established in 1993 in the village of Roslin, Scotland, as an independent research center by the Biotechnology and Biological Sciences Research Council (BBSRC), and as of 2014 is part of the University of Edinburgh in Edinburgh, Scotland. Researchers at the Roslin Institute cloned the Dolly the sheep in 1996. According to the Roslin Institute, Dolly was the first mammal to develop into an adult from the transfer of the nucleus of an adult sheep cell into an ovum with the nucleus removed.

Format: Articles

Subject: Organizations

DNA and X and Y Chromosomes

Object is a digital image that represents how DNA partly constitutes a Y-chromosome. Image shows different parts of an unbroken strand that begins with the smallest parts on the left side of the image, and eventually forms the Y-chromosome on the right side of the image, so that the chromosome looks like a kite with a long tail. On the left side of the image, a DNA double helix is enlarged to reveal the paired nucleotides within. The width of the helix is 2 nanometers. As the helix continues to the right, it bends downwards, and it gets smaller and seemingly further way from the viewer.

Y-chromosomes exist in the body cells of many kinds of male animals. Found in the nucleus of most living animal cells, the X and Y-chromosomes are condensed structures made of DNA wrapped around proteins called histones. The individual histones bunch into groups that the coiled DNA wraps around called a nucleosome, which are roughly 10 nano-meters (nm) across. The histones bunch together to form a helical fiber (30 nm) that spins into a supercoil (200 nm). During much of a cell's life, DNA exists in the 200 nm supercoil phase.

Format: Graphics

Subject: Theories, Processes

"The Cell-Theory" (1853), by Thomas Henry Huxley

The Cell-Theory was written by Thomas Henry Huxley in Britain and published in 1853 by The British and Foreign Medico-Chirurgical Review. The twenty-two page article reviews twelve works on cell theory, including those in Germany by Caspar Friedrich Wolff in the eighteenth century and by Karl Ernst von Baer in the nineteenth century. Huxley spends much of The Cell-Theory on a cell theory proposed in the late 1830s by Matthias Schleiden and Theodor Schwann in Germany.

Format: Articles

Subject: Publications

Mitochondria

All cells that have a nucleus, including plant, animal, fungal cells, and most single-celled protists, also have mitochondria. Mitochondria are particles called organelles found outside the nucleus in a cell's cytoplasm. The main function of mitochondria is to supply energy to the cell, and therefore to the organism. The theory for how mitochondria evolved, proposed by Lynn Margulis in the twentieth century, is that they were once free-living organisms.

Format: Articles

Subject: Organisms, Theories

"Transplantation of Living Nuclei from Blastula Cells into Enucleated Frogs' Eggs" (1952), by Robert Briggs and Thomas J. King

In 1952 Robert Briggs and Thomas J. King published their article, "Transplantation of Living Nuclei from Blastula Cells into Enucleated Frogs' Eggs," in the Proceedings of the National Academy of Sciences, the culmination of a series of experiments conducted at the Institute for Cancer Research and Lankenau Hospital Research Institute in Philadelphia, Pennsylvania. In this paper Briggs and King examined whether nuclei of embryonic cells are differentiated, and by doing so, were the first to conduct a successful nuclear transplantation with amphibian embryos.

Format: Articles

Subject: Experiments

Theodor Heinrich Boveri (1862-1915)

Theodor Boveri investigated the mechanisms of heredity. He developed the chromosomal theory of inheritance and the idea of chromosomal individuality. Boveri sought to provide a comprehensive explanation for the hereditary role and behavior of chromosomes. He hoped that his experiments would also help to distinguish the roles of the nucleus and the cytoplasm in embryogenesis. Boveri was particularly interested in how offspring are shaped by the attributes of their parents.

Format: Articles

Subject: People

John Bertrand Gurdon (1933- )

Sir John Bertrand Gurdon further developed nuclear transplantation, the technique used to clone organisms and to create stem cells, while working in Britain in the second half of the twentieth century. Gurdon's research built on the work of Thomas King and Robert Briggs in the United States, who in 1952 published findings that indicated that scientists could take a nucleus from an early embryonic cell and successfully transfer it into an unfertilized and enucleated egg cell.

Format: Articles

Subject: People

Allan Charles Wilson (1934-1991)

Allan C. Wilson studied genes, proteins, and body structures of animals and humans in the US during the second half of the twentieth century. Wilson also studied human evolution. Although morphology and behaviors of humans (Homo sapiens) and great apes differ, Wilson found that they have biochemical and genetic similarities. Wilson and his colleagues calculated the time period of humans' and African apes' common ancestor.

Format: Articles

Subject: People

Neurospora crassa Life Cycle

Object is a digital image with two parts that together show the Neurospora life cycle. The left part shows the asexual reproductive cycle of the mold. The right part shows the sexual reproductive cycle of the mold.

This diagram shows the life cycle of Neurospora crassa, a mold that grows on bread. N. crassa can reproduce through an asexual cycle or a sexual cycle. The asexual cycle (colored as a purple circle), begins in this figure with (1a) vegetative mycelium, which are strands of mature fungus. Some of the strands form bulbs (2a) in a process called conidiation. From those bulbs develop the conidia, which are spores. Next, (3a) a single conidium separates from its strand and elongates until it forms mycelium.

Format: Graphics

Subject: Organisms, Processes, Theories

Mitochondrial DNA (mtDNA)

Mitochondrial DNA (mtDNA) is located outside the nucleus in the liquid portion of the cell (cytoplasm) inside cellular organelles called Mitochondria. Mitochondria are located in all complex or eukaryotic cells, including plant, animal, fungi, and single celled protists, which contain their own mtDNA genome. In animals with a backbone, or vertebrates, mtDNA is a double stranded, circular molecule that forms a circular genome, which ranges in size from sixteen to eighteen kilo-base pairs, depending on species. Each mitochondrion in a cell can have multiple copies of the mtDNA genome.

Format: Articles

Subject: Theories

"Mitochondrial DNA and Human Evolution" (1987), by Rebecca Louise Cann, Mark Stoneking, and Allan Charles Wilson

In 1987 Rebecca Louise Cann, Mark Stoneking, and Allan Charles Wilson published Mitochondrial DNA and Human Evolution in the journal Nature. The authors compared mitochondrial DNA from different human populations worldwide, and from those comparisons they argued that all human populations had a common ancestor in Africa around 200,000 years ago. Mitochondria DNA (mtDNA) is a small circular genome found in the subcellular organelles, called mitochondria.

Format: Articles

Subject: Publications, Theories

"Developmental Capacity of Nuclei Transplanted from Keratinized Skin Cells of Adult Frogs" (1975), by John Gurdon, Ronald Laskey, and O. Raymond Reeves

In 1975 John Gurdon, Ronald Laskey, and O. Raymond Reeves published "Developmental Capacity of Nuclei Transplanted from Keratinized Skin Cells of Adult Frogs," in the Journal of Embryology and Experimental Morphology. Their article was the capstone of a series of experiments performed by Gurdon during his time at Oxford and Cambridge, using the frog species Xenopus laevis. Gurdon's first experiment in 1958 showed that the nuclei of Xenopus cells maintained their ability to direct normal development when transplanted.

Format: Articles

Subject: Experiments, Publications

The Developmental Capacity of Nuclei taken from Intestinal Epithelium Cells of Feeding Tadpoles by J. B. Gurdon (1962)

The Developmental Capacity of Nuclei taken from Intestinal Epithelium Cells of Feeding Tadpoles describes a series of experiments by researcher John Bertrand Gurdon in 1962 at the University of Oxford in Oxford, England. In the experiment, Gurdon conducted nuclear transplantation, or cloning, of differentiated cells, or cells that have already specialized to become one cell type or another, in tadpoles. Gurdon's experiment showed that differentiated adult cells could be induced to an undifferentiated state, where they could once again become multiple cell types.

Format: Article

Subject: Experiments

Karl Wilhelm Theodor Richard von Hertwig (1850-1937)

Karl Wilhelm Theodor Richard von Hertwig is an important figure in the history of embryology for his contributions of artificial hybridization of sea urchin eggs and the formulation of his coelom theory. He was born 23 September 1850 in Friedelberg, Germany, to Elise Trapp and Carl Hertwig. Richard and his older brother Oscar began their studies at Jena under the direction of Ernst Haeckel from 1868 to 1871. In 1872 Hertwig became a lecturer in zoology at Jena while Oscar lectured in anatomy and embryology.

Format: Articles

Subject: People

"Sheep Cloned by Nuclear Transfer from a Cultured Cell Line" (1996), by Keith Campbell, Jim McWhir, William Ritchie, and Ian Wilmut

In 1995 and 1996, researchers at the Roslin Institute in Edinburgh, Scotland, cloned mammals for the first time. Keith Campbell, Jim McWhir, William Ritchie, and Ian Wilmut cloned two sheep, Megan and Morag, using sheep embryo cells. The experiments indicated how to reprogram nuclei from differentiated cells to produce live offspring, and that a single population of differentiated cells could produce multiple offspring. They reported their results in the article 'Sheep Cloned by Nuclear Transfer from a Cultured Cell Line' in March 1996.

Format: Articles

Subject: Experiments

Dizhou Tong (1902-1979)

Dizhou Tong, also called Ti Chou Tung, studied marine animals and helped introduce and organize experimental embryology in China during the twentieth century. He introduced cellular nuclear transfer technology to the Chinese biological community, developed methods to clone organisms from many marine species, and investigated the role of cytoplasm in early development. Tong's administrative and scientific leadership in the fields of marine, cellular, and developmental biology contributed to China's experimental embryology research programs.

Format: Articles

Subject: People

Wilhelm August Oscar Hertwig (1849-1922)

Wilhelm August Oscar Hertwig contributed to embryology through his studies of cells in development and his discovery that only one spermatozoon is necessary to fertilize an egg. He was born 21 April 1849 to Elise Trapp and Carl Hertwig in Hessen, Germany. After his brother Richard was born the family moved to Muhlhausen in Thuringen where the boys were educated. The two brothers later attended the university in Jena from 1868 to 1888 and studied under Ernst Haeckel, who later convinced Hertwig to leave chemistry and pursue medicine.

Format: Articles

Subject: People

Effects of Prenatal Alcohol Exposure on Basal Ganglia Development

Prenatal exposure to alcohol (ethanol) in human and animal models results in a range of alcohol-induced developmental defects. In humans, those collective birth defects are called Fetal Alcohol Spectrum Disorders, with the most severe manifestation being Fetal Alcohol Syndrome (FAS). FAS is defined by pre- and post-natal growth retardation, minor facial abnormalities, and deficiencies in the central nervous system (CNS). The basal ganglia, one of the central nervous system components, are affected by exposure to ethanol during development.

Format: Articles

Subject: Disorders, Reproduction

Pages