Displaying 1 - 10 of 10 items.

The Development of the Neural Crest and the Migration of Neural Crest Cells (NCCs) in the Embryos of Various Vertebrates

Object is a digitized image line drawings that depict the formation of neural crest cells in vertebrates. Image has six sub images, which depict six stages, labeled (a) through (f), of the neural plate as it folds to form the neural tube, neural crest cells, and a sheet of extoderm. Arrows between the six subimages indicate developmental processes for different taxa. The path from (a) to (b) to (c) represents the process in rats. The path (a) to (b) to (d) to (f) represents the process in birds. The path (a) to (b) to (e) to (f) represents the process in amphibians.

This diagram shows how NCCs migrate differently in rats, birds and amphibians. The arrows represent both chronology of NCCs migration and the differential paths that NCCs follow in different classes of animals. The solid black portion of each illustration represents the neural crest, and the large black dots in (c) and in (f) represent the neural crest cells. The speckled sections that at first form a basin in (a) and then close to form a tube in (f) represent the neural ectoderm. The solid white portions represent the epidermal ectoderm.

Format: Graphics

Subject: Theories, Processes

Fruit Fly Life Cycle

Object is a digital image of fruit flies, showing how they develop through stages of egg, larva, pupa, and adult. The image has a magnification box on parts of the larvae. The box displays imaginal disc, which eventually develop into the adult body parts.

Fruit flies of the species Drosophila melanogaster develop from eggs to adults in eight to ten days at 25 degrees Celsius. They develop through four primary stages: egg, larva, pupa, and adult. When in the wild, female flies lay their fertilized eggs in rotting fruit or other decomposing material that can serve as food for the larvae. In the lab, fruit flies lay their fertilized eggs in a mixture of agar, molasses, cornmeal, and yeast. After roughly a day, each egg hatches into a larva.

Format: Graphics

Subject: Theories, Processes, Organisms

Some of the Cells that Arise from Animal Gastrulas with Three Germ Layers

Object is a digital image of an animal triploblastic gastrula. The image labels the three germ layers and some of the fully differentiated cell types that arise from those germ layers. The image shows the egg and sperm germ cells. It also shows and labels the epithelial cells, liver cells, and endothelial cells that develop from endoderm. It also shows the skeletal musclecells, osteoblast cells, cardiac muscle cells, and red blood cells that develop from the mesoderm. It also shows the hair cells, skin cells, and neuron cells that develop from the ectoderm.

From a developing embryos three primary germ layers, ectoderm (green), mesoderm (pink) and endoderm (yellow), a variety of differentiated cell types and organ systems arise, far more than are shown here. The three primary germ layers are shown during the gastrula stage because they become distinct at the gastrula stage. The germ cells (blue) are pre- cursors to sperm and egg cells, and they are set aside early in development, and are thought to arise from the ectoderm.

Format: Graphics

Subject: Theories, Processes

Neurospora crassa Life Cycle

Object is a digital image with two parts that together show the Neurospora life cycle. The left part shows the asexual reproductive cycle of the mold. The right part shows the sexual reproductive cycle of the mold.

This diagram shows the life cycle of Neurospora crassa, a mold that grows on bread. N. crassa can reproduce through an asexual cycle or a sexual cycle. The asexual cycle (colored as a purple circle), begins in this figure with (1a) vegetative mycelium, which are strands of mature fungus. Some of the strands form bulbs (2a) in a process called conidiation. From those bulbs develop the conidia, which are spores. Next, (3a) a single conidium separates from its strand and elongates until it forms mycelium.

Format: Graphics

Subject: Organisms, Processes, Theories

Beadle and Ephrussi’s Technique to Transplant Optic Discs between Fruit Fly Larvae

Object is a digital image of fruit fly larvae. There are three panes. In the first, a micropipette sucks the optic disc from a fruit fly larva. In the second, the micropipette pushes the optic disc into the abdomen of another fruit fly larva. The third pane shows the adult fruit fly from the second pane with an eye that has developed in its abdomen.

In 1935, George Beadle and Boris Ephrussi developed a technique to transplant optic discs between fruit fly larvae. They developed it while at the California Institute of Technology in Pasedena, California. Optic discs are tissues from which the adult eyes develop. Beadle and Ephrussi used their technique to study the development of the eye and eye pigment. (1) The experimenter dissects a donor larva, which is in the third instar stage of development, and removes the optic disc (colored red) with a micropipette.

Format: Graphics

Subject: Technologies, Experiments, Organisms

Beadle and Ephrussi Show that Something Besides Eye Tissue Determines Eye Color in Fruit Flies

Object is a digital image of fruit flies, and it has three panes. The first pane shows two fruit fly larvae, with one having its optic disc removed and the other getting that disc inserted in its abdomen. The second pane shows an adult fruit fly, a donee, which has a normal colored eye in its abdomen. The third pane shows an adult fruit fly, a donee, which has an abnormally colored eye in its abdomen.

In the 1930s, George Beadle and Boris Ephrussi discovered factors that affect eye colors in developing fruit flies. They did so while working at the California Institute of Technology in Pasadena, California. (1) They took optic discs (colored fuchsia in the image) from fruit fly larvae in the third instar stage of development. Had the flies not been manipulated, they would have developed into adults with vermilion eyes.

Format: Graphics

Subject: Experiments, Organisms

DNA and X and Y Chromosomes

Object is a digital image that represents how DNA partly constitutes a Y-chromosome. Image shows different parts of an unbroken strand that begins with the smallest parts on the left side of the image, and eventually forms the Y-chromosome on the right side of the image, so that the chromosome looks like a kite with a long tail. On the left side of the image, a DNA double helix is enlarged to reveal the paired nucleotides within. The width of the helix is 2 nanometers. As the helix continues to the right, it bends downwards, and it gets smaller and seemingly further way from the viewer.

Y-chromosomes exist in the body cells of many kinds of male animals. Found in the nucleus of most living animal cells, the X and Y-chromosomes are condensed structures made of DNA wrapped around proteins called histones. The individual histones bunch into groups that the coiled DNA wraps around called a nucleosome, which are roughly 10 nano-meters (nm) across. The histones bunch together to form a helical fiber (30 nm) that spins into a supercoil (200 nm). During much of a cell's life, DNA exists in the 200 nm supercoil phase.

Format: Graphics

Subject: Theories, Processes

Southern Gastric Brooding Frog

Object is a painted image of two southern gastric brooding frogs facing each other. The one on the left has a transparent middle to reveal tadpoles swimming inside of it. The one on the right shows a more mature juvenile crawling out of the mouth.

The Southern Gastric Brooding Frog (Rheobotrahcus silus) was a frog species that lived in Australia. It was declared extinct in 2002. Once adult males fertilized the eggs of females, the females swallowed their eggs. The stomachs of the females then functioned somewhat like wombs, protecting the eggs while they gestated. Once the eggs developed into juveniles, female frogs performed oral birth and regurgitated their young.

Format: Graphics

Subject: Organisms

Mechanism of Notch Signaling

Object is a digital image of Notch signaling between a signaling cell and a receiving cell. Labels indicate the signaling and receiving cells, nuclear membrane, Notch receptor, the ligand, a protease, a transcription factor and a repressor. The image depicts three stages involved in Notch signaling, including the binding of the ligand with the receptor, the action of the protease, and the Notch intracellular domain fragment replacing the repressor in the nucleus.

Mechanism of Notch Signaling: The image depicts a type of cell signaling, in which two animal cells interact and transmit a molecular signal from one to the other. The process results in the production of proteins, which influence the cells as they differentiate, move, and contribute to embryological development. In the membrane of the signaling cell, there is a ligand (represented by a green oval). The ligand functions to activate a change in a receptor molecule. In the receiving cell, there are receptors; in this case, Notch proteins (represented by orange forks).

Format: Graphics

Subject: Theories, Processes

Beadle's One Gene-One Enzyme Hypothesis

Object is a digital image with two panes, one on top of the other, both of which picture the area within a cell between the nucleus and the cell membrane. The top pane represent three genes within the cell nucleus, each of which produces a distinct kind of enzyme outside of the nucleus. Those enzymes then function in three distinct kinds of metabolic reactions. The bottom pane represents the same situation, except the second gene is damaged by x-rays and can't produce its enzymes. As a result, two of the three metabolic reactions fail to happen.

Between 1934 and 1945, George Beadle developed a hypothesis that each gene within the chromosomes of organisms each produced one enzyme. Enzymes are types of proteins that can catalyze reactions inside cells, and the figure shows that each enzyme controls a stage in a series of biochemical reactions. The top box in this figure represents a normal process of enzyme production and biochemical reactions, and the bottom box shows how Beadle's experiments affected the normal biochemical process.

Format: Graphics

Subject: Theories, Processes