Search

Displaying 1 - 25 of 147 items.

Pages

Germ Layers

A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through the process of gastrulation. During gastrulation, a hollow cluster of cells called a blastula reorganizes into two primary germ layers: an inner layer, called endoderm, and an outer layer, called ectoderm.

Format: Articles

Subject: Theories, Processes

Some of the Cells that Arise from Animal Gastrulas with Three Germ Layers

Object is a digital image of an animal triploblastic gastrula. The image labels the three germ layers and some of the fully differentiated cell types that arise from those germ layers. The image shows the egg and sperm germ cells. It also shows and labels the epithelial cells, liver cells, and endothelial cells that develop from endoderm. It also shows the skeletal musclecells, osteoblast cells, cardiac muscle cells, and red blood cells that develop from the mesoderm. It also shows the hair cells, skin cells, and neuron cells that develop from the ectoderm.

From a developing embryos three primary germ layers, ectoderm (green), mesoderm (pink) and endoderm (yellow), a variety of differentiated cell types and organ systems arise, far more than are shown here. The three primary germ layers are shown during the gastrula stage because they become distinct at the gastrula stage. The germ cells (blue) are pre- cursors to sperm and egg cells, and they are set aside early in development, and are thought to arise from the ectoderm.

Format: Graphics

"Derivation of Pluripotent Stem Cells from Cultured Human Primordial Germ Cells" (1998), by John Gearhart et al.

In November 1998, two independent reports were published concerning the first isolation of pluripotent human stem cells, one of which was "Derivation of Pluripotent Stem Cells from Cultured Human Primordial Germ Cells." This paper, authored by John D. Gearhart and his research team - Michael J Shamblott, Joyce Axelman, Shunping Wang, Elizabeith M. Bugg, John W. Littlefield, Peter J. Donovan, Paul D. Blumenthal, and George R. Huggins - was published in Proceedings of the National Academy of Science soon after James A.

Format: Articles

Subject: Publications

Julia Barlow Platt (1857-1935)

Julia Barlow Platt studied neural crests in animal embryos and became involved in politics in the US during the nineteenth and twentieth centuries. She researched how body and head segments formed in chicks (Gallus gallus) and spiny dogfish (Squalus acanthias). Platt observed that in the mudpuppy (Necturus maculosus), the coordinated migration of neural crest cells in the embryo produced parts of the nervous system, bones, and connective tissues in the head.

Format: Articles

Subject: People

Endoderm

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of cells transforms into a two-layered embryo made of an inner layer of endoderm and an outer layer of ectoderm. In more complex organisms, like vertebrates, these two primary germ layers interact to give rise to a third germ layer, called mesoderm.

Format: Articles

Subject: Processes

Mesoderm

Mesoderm is one of the three germ layers, groups of cells that interact early during the embryonic life of animals and from which organs and tissues form. As organs form, a process called organogenesis, mesoderm interacts with endoderm and ectoderm to give rise to the digestive tract, the heart and skeletal muscles, red blood cells, and the tubules of the kidneys, as well as a type of connective tissue called mesenchyme. All animals that have only one plane of symmetry through the body, called bilateral symmetry, form three germ layers.

Format: Articles

Subject: Processes

Ectoderm

Ectoderm is one of three germ layers--groups of cells that coalesce early during the embryonic life of all animals except maybe sponges, and from which organs and tissues form. As an embryo develops, a single fertilized cell progresses through multiple rounds of cell division. Eventually, the clump of cells goes through a stage called gastrulation, during which the embryo reorganizes itself into the three germ layers: endoderm, ectoderm, and mesoderm. After gastrulation, the embryo goes through a process called neurulation, which starts the development of nervous system.

Format: Articles

Subject: Processes

Neural Crest

Early in the process of development, vertebrate embryos develop a fold on the neural plate where the neural and epidermal ectoderms meet, called the neural crest. The neural crest produces neural crest cells (NCCs), which become multiple different cell types and contribute to tissues and organs as an embryo develops. A few of the organs and tissues include peripheral and enteric (gastrointestinal) neurons and glia, pigment cells, cartilage and bone of the cranium and face, and smooth muscle.

Format: Articles

Subject: Theories

The Development of the Neural Crest and the Migration of Neural Crest Cells (NCCs) in the Embryos of Various Vertebrates

Object is a digitized image line drawings that depict the formation of neural crest cells in vertebrates. Image has six sub images, which depict six stages, labeled (a) through (f), of the neural plate as it folds to form the neural tube, neural crest cells, and a sheet of extoderm. Arrows between the six subimages indicate developmental processes for different taxa. The path from (a) to (b) to (c) represents the process in rats. The path (a) to (b) to (d) to (f) represents the process in birds. The path (a) to (b) to (e) to (f) represents the process in amphibians.

This diagram shows how NCCs migrate differently in rats, birds and amphibians. The arrows represent both chronology of NCCs migration and the differential paths that NCCs follow in different classes of animals. The solid black portion of each illustration represents the neural crest, and the large black dots in (c) and in (f) represent the neural crest cells. The speckled sections that at first form a basin in (a) and then close to form a tube in (f) represent the neural ectoderm. The solid white portions represent the epidermal ectoderm.

Format: Graphics

Gastrulation in Mus musculus (common house mouse)

As mice embryos develop, they undergo a stage of development called gastrulation. The hallmark of vertebrate gastrulation is the reorganization of the inner cell mass (ICM) into the three germ layers: ectoderm, mesoderm, and endoderm. Mammalian embryogenesis occurs within organisms; therefore, gastrulation was originally described in species with easily observable embryos. For example, the African clawed frog (Xenopus laevis) is the most widely used organism to study gastrulation because the large embryos develop inside a translucent membrane.

Format: Articles

Subject: Processes, Experiments

Neurocristopathies

Neurocristopathies are a class of pathologies in vertebrates,
including humans, that result from abnormal expression, migration,
differentiation, or death of neural crest cells (NCCs) during embryonic development. NCCs are cells
derived from the embryonic cellular structure called the neural crest.
Abnormal NCCs can cause a neurocristopathy by chemically affecting the
development of the non-NCC tissues around them. They can also affect the
development of NCC tissues, causing defective migration or

Format: Articles

Subject: Theories

Gastrulation in Gallus gallus (Domestic Chicken)

Gastrulation is an early stage in embryo development in which the blastula reorganizes into three germ layers: the ectoderm, the mesoderm, and the endoderm. Gastrulation occurs after cleavage but before neurulation and organogenesis. Ernst Haeckel coined the term; gaster, meaning stomach in Latin, is the root for gastrulation, as the gut is one of the most unique creations of the gastrula.

Format: Articles

Subject: Processes

Gastrulation in Xenopus

The process of gastrulation allows for the formation of the germ layers in metazoan embryos, and is generally achieved through a series of complex and coordinated cellular movements. The process of gastrulation can be either diploblastic or triploblastic. In diploblastic organisms like cnidaria or ctenophora, only the endoderm and the ectoderm form; in triploblastic organisms (most other complex metazoans), triploblastic gastrulation produces all three germ layers.

Format: Articles

Subject: Processes

Fate Map

Early development occurs in a highly organized and orchestrated manner and has long attracted the interest of developmental biologists and embryologists. Cell lineage, or the study of the developmental differentiation of a blastomere, involves tracing a particular cell (blastomere) forward from its position in one of the three germ layers. Labeling individual cells within their germ layers allows for a pictorial interpretation of gastrulation. This chart or graphical representation detailing the fate of each part of an early embryo is referred to as a fate map.

Format: Articles

Subject: Processes

Teratomas

Teratomas are embryonal tumors that normally arise from germ cells and are typically benign. They are defined as being composed either of tissues that are foreign to the area in which they form, or of tissues that derive from all three of the germ layers. Malignant teratomas are known as teratocarcinomas; these cancerous growths have played a pivotal role in the discovery of stem cells. "Teratoma" is Greek for "monstrous tumor"; these tumors were so named because they sometimes contain hair, teeth, bone, neurons, and even eyes.

Format: Articles

Subject: Processes, Disorders

Gavin Rylands de Beer (1899-1972)

Gavin de Beer was an English zoologist known for his contributions to evolution and embryology, in particular for showing the inadequacy of the germ layer theory as it was then proposed. He was born in London, England, on 1 November 1899, but was raised for his first thirteen years in France where his father worked for a telegraph company. He entered Magdalen College, Oxford, in 1917 but his studies were soon interrupted by World War I. After serving in the military, he returned to Oxford where he studied under Edwin Goodrich.

Format: Articles

Subject: People

August Friedrich Leopold Weismann (1834-1914)

August Friedrich Leopold Weismann studied how the traits of organisms developed and evolved in a variety of organisms, mostly insects and aquatic animals, in Germany in the late nineteenth and early twentieth centuries. Weismann proposed the theory of the continuity of germ-plasm, a theory of heredity. Weismann postulated that germ-plasm was the hereditary material in cells, and parents transmitted to their offspring only the germ-plasm present in germ-cells (sperm and egg cells) rather than somatic or body cells.

Format: Articles

Subject: People

The Carapacial Ridge of Turtles

Two main elements characterize the skeletal morphology of turtles: the carapace and the plastron. For a turtle, the carapacial ridge begins in the embryo as a bulge posterior to the limbs but on both sides of the body. Such outgrowths are the first indication of shell development in turtle embryos. While the exact mechanisms underpinning the formation of the carapacial ridge are still not entirely known, some biologists argue that understanding these embryonic mechanisms is pivotal to explaining both the development of turtles and their evolutionary history.

Format: Articles

Subject: Processes

Hensen's Node

A node, or primitive knot, is an enlarged group of cells located in the anterior portion of the primitive streak in a developing gastrula. The node is the site where gastrulation, the formation of the three germ layers, first begins. The node determines and patterns the anterior-posterior axis of the embryo by directing the development of the chordamesoderm. The chordamesoderm is a specific type of mesoderm that will differentiate into the notochord, somites, and neural tube. Those structures will later form the vertebral column.

Format: Articles

Subject: Processes

Epithelium

Frederik Ruysch, working in the Netherlands, introduced the term epithelia in the third volume of his Thesaurus Anatomicus in 1703. Ruysch created the term from the Greek epi, which means on top of, and thele, which means nipple, to describe the type of tissue he found when dissecting the lip of a cadaver. In the mid nineteenth century, anatomist Albrecht von Haller adopted the word epithelium, designating Ruysch's original terminology as the plural version. In modern science, epithelium is a type of animal tissue in which cells are packed into neatly arranged sheets.

Format: Articles

Subject: Theories, Processes

Jan Evangelista Purkyne (1787-1869)

Jan Evangelista Purkyne, also called Johannes or Johann Evangelist Purkinje, studied cells in the cerebellum, fibers of the heart, subjective visual phenomenon, and germinal vesicle, in eastern Europe during the early nineteenth century. His investigations provided insights into various mechanisms and structures of the human body. Purkyne introduced techniques for decalcification of bones and teeth, embedding of tissue specimens, and eye examinations.

Format: Articles

Subject: People

Endothelium

The endothelium is the layer of cells lining the blood vessels in animals. It weighs more than one kilogram in adult humans, and it covers a surface area of 4000 to 7000 square meters. The endothelium is the cellular interface between the circulating blood and underlying tissue. As the medium between these two sets of tissues, endothelium is part of many normal and disease processes throughout the body.

Format: Articles

Subject: Processes, Theories

The Germ-Plasm: a Theory of Heredity (1893), by August Weismann

Friedrich Leopold August Weismann published Das
Keimplasma: eine Theorie der Vererbung (The Germ-Plasm: a
Theory of Heredity, hereafter The Germ-Plasm) while
working at the University of Freiburg in Freiburg, Germany in 1892.
William N. Parker, a professor in the University College of South
Wales and Monmouthshire in Cardiff, UK, translated The
Germ-Plasm into English in 1893. In The Germ-Plasm,
Weismann proposed a theory of heredity based on the concept of the

Format: Articles

Subject: Publications, Theories

The Blastoderm in Chicks During Early Gastrulation

StageName: 4

This image shows a chicken (Gallus gallus) embryo undergoing gastrulation in stage four (18-19 hrs after laying) according to the Hamburger-Hamilton staging series. At this point in time the chicken embryo is a blastoderm (shown in blue). The first magnification of the embryo shows that the blastoderm cell layers have thickened to form the primitive streak and Hensen's node. The primitive streak extends from the posterior (P) region to the anterior (A) region. The second rectangular magnification shows the blastoderm cross-sectioned through the primitive streak.

Format: Graphics

De ovi mammalium et hominis genesi (1827), by Karl Ernst von Baer

De ovi mammalium et hominis genesi (On the Genesis of the Ovum of Mammals and of Men) is an 1827 pamphlet by Karl Ernst von Baer about the anatomical observation and description of the egg (ovum) of mammals, like dogs and humans. The pamphlet detailed evidence for the existence of the ovum at the beginning of the developmental process in mammals.

Subject: Publications

Pages