Search

Displaying 1 - 25 of 511 items.

Pages

Germ Layers

A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through the process of gastrulation. During gastrulation, a hollow cluster of cells called a blastula reorganizes into two primary germ layers: an inner layer, called endoderm, and an outer layer, called ectoderm.

Format: Articles

Subject: Theories, Processes

Some of the Cells that Arise from Animal Gastrulas with Three Germ Layers

Object is a digital image of an animal triploblastic gastrula. The image labels the three germ layers and some of the fully differentiated cell types that arise from those germ layers. The image shows the egg and sperm germ cells. It also shows and labels the epithelial cells, liver cells, and endothelial cells that develop from endoderm. It also shows the skeletal musclecells, osteoblast cells, cardiac muscle cells, and red blood cells that develop from the mesoderm. It also shows the hair cells, skin cells, and neuron cells that develop from the ectoderm.

From a developing embryos three primary germ layers, ectoderm (green), mesoderm (pink) and endoderm (yellow), a variety of differentiated cell types and organ systems arise, far more than are shown here. The three primary germ layers are shown during the gastrula stage because they become distinct at the gastrula stage. The germ cells (blue) are pre- cursors to sperm and egg cells, and they are set aside early in development, and are thought to arise from the ectoderm.

Format: Graphics

"Derivation of Pluripotent Stem Cells from Cultured Human Primordial Germ Cells" (1998), by John Gearhart et al.

In November 1998, two independent reports were published concerning the first isolation of pluripotent human stem cells, one of which was "Derivation of Pluripotent Stem Cells from Cultured Human Primordial Germ Cells." This paper, authored by John D. Gearhart and his research team - Michael J Shamblott, Joyce Axelman, Shunping Wang, Elizabeith M. Bugg, John W. Littlefield, Peter J. Donovan, Paul D. Blumenthal, and George R. Huggins - was published in Proceedings of the National Academy of Science soon after James A.

Format: Articles

Subject: Publications

Human Embryonic Stem Cells

Stem cells are undifferentiated cells that are capable of dividing for long periods of time and can give rise to specialized cells under particular conditions. Embryonic stem cells are a particular type of stem cell derived from embryos. According to US National Institutes of Health (NIH), in humans, the term "embryo" applies to a fertilized egg from the beginning of division up to the end of the eighth week of gestation, when the embryo becomes a fetus. Between fertilization and the eighth week of gestation, the embryo undergoes multiple cell divisions.

Format: Articles

Subject: Processes, Reproduction

Stem Cell Tourism

When James Thomson of the University of Wisconsin announced in 1998 that he had derived and cultured human embryonic stem cells(hESCs), Americans widely believed-and accepted-that stem cells would one day be the basis of a multitude of regenerative medical techniques. Researchers promised that they would soon be able to cure a variety of diseases and injuries such as cancer, diabetes, Parkinson's, spinal cord injuries, severe burns, and many others. But it wasn't until January 2009 that the Food and Drug Administration approved the first human clinical trials using hESCs.

Format: Articles

Subject: Theories, Ethics

The Cell in Development and Inheritance (1900), by Edmund Beecher Wilson

The Cell in Development and Inheritance, by Edmund Beecher Wilson, provided a textbook introduction to cell biology for generations of biologists in the twentieth century. In his book, Wilson integrated information about development, inheritance, chromosomes, organelles, and the structure and functions of cells. First published in 1896, the book started with 371 pages, grew to 483 pages in the second edition that appeared in 1900, and expanded to 1,231 pages by the third and final edition in 1925.

Format: Articles

Subject: Publications

Somatic Cell Nuclear Transfer in Mammals (1938-2013)

In the second half of the
twentieth century, scientists learned how to clone organisms in some
species of mammals. Scientists have applied somatic cell nuclear transfer to clone human and
mammalian embryos as a means to produce stem cells for laboratory
and medical use. Somatic cell nuclear transfer (SCNT) is a technology applied in cloning, stem cell
research and regenerative medicine. Somatic cells are cells that
have gone through the differentiation process and are not germ
cells. Somatic cells donate their nuclei, which scientists

Format: Articles

Subject: Theories, Technologies, Processes

The Development of the Neural Crest and the Migration of Neural Crest Cells (NCCs) in the Embryos of Various Vertebrates

Object is a digitized image line drawings that depict the formation of neural crest cells in vertebrates. Image has six sub images, which depict six stages, labeled (a) through (f), of the neural plate as it folds to form the neural tube, neural crest cells, and a sheet of extoderm. Arrows between the six subimages indicate developmental processes for different taxa. The path from (a) to (b) to (c) represents the process in rats. The path (a) to (b) to (d) to (f) represents the process in birds. The path (a) to (b) to (e) to (f) represents the process in amphibians.

This diagram shows how NCCs migrate differently in rats, birds and amphibians. The arrows represent both chronology of NCCs migration and the differential paths that NCCs follow in different classes of animals. The solid black portion of each illustration represents the neural crest, and the large black dots in (c) and in (f) represent the neural crest cells. The speckled sections that at first form a basin in (a) and then close to form a tube in (f) represent the neural ectoderm. The solid white portions represent the epidermal ectoderm.

Format: Graphics

"Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells" (2007), by Junying Yu et al.

On 2 December 2007, Science published a report on creating human induced pluripotent stem (iPS) cells from human somatic cells: "Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells." This report came from a team of Madison, Wisconsin scientists: Junying Yu, Maxim A. Vodyanik, Kim Smuga-Otto, Jessica Antosiewicz-Bourget, Jennifer L. Frane, Shulan Tian, Jeff Nie, Gudrun A. Jonsdottir, Victor Ruotti, Ron Stewart, Igor I. Slukvin, and James A. Thomson.

Format: Articles

Subject: Publications

Stem Cells

According to the US National Institutes of Health (NIH), the standard American source on stem cell research, three characteristics of stem cells differentiate them from other cell types: (1) they are unspecialized cells that (2) divide for long periods, renewing themselves and (3) can give rise to specialized cells, such as muscle and skin cells, under particular physiological and experimental conditions. When allowed to grow in particular environments, stem cells divide many times. This ability to proliferate can yield millions of stem cells over several months.

Format: Articles

Subject: Processes

Purkinje Cells

Purkinje cells, also called Purkinje neurons, are neurons in vertebrate animals located in the cerebellar cortex of the brain. Purkinje cell bodies are shaped like a flask and have many threadlike extensions called dendrites, which receive impulses from other neurons called granule cells. Each cell also has a single projection called an axon, which transmits impulses to the part of the brain that controls movement, the cerebellum. Purkinje cells are inhibitory neurons: they secrete neurotransmitters that bind to receptors that inhibit or reduce the firing of other neurons.

Format: Articles

Subject: Theories

August Friedrich Leopold Weismann (1834-1914)

August Friedrich Leopold Weismann studied how the traits of organisms developed and evolved in a variety of organisms, mostly insects and aquatic animals, in Germany in the late nineteenth and early twentieth centuries. Weismann proposed the theory of the continuity of germ-plasm, a theory of heredity. Weismann postulated that germ-plasm was the hereditary material in cells, and parents transmitted to their offspring only the germ-plasm present in germ-cells (sperm and egg cells) rather than somatic or body cells.

Format: Articles

Subject: People

"Generation of Induced Pluripotent Stem Cells Using Recombinant Proteins" (2009), by Hongyan Zhou et al.

Induced pluripotent stem cells (iPSCs) are studied carefully by scientists not just because they are a potential source of stem cells that circumvents ethical controversy involved with experimentation on human embryos, but also because of their unique potential to advance the field of regenerative medicine. First generated in a lab by Kazutoshi Takahashi and Shinya Yamanaka in 2006, iPSCs have the ability to differentiate into cells of all types.

Format: Articles

Subject: Publications

Induced Pluripotent Stem Cell Experiments by Kazutoshi Takahashi and Shinya Yamanaka in 2006 and 2007

In 2006, Kazutoshi Takahashi and Shinya Yamanaka reprogrammed mice fibroblast cells, which can produce only other fibroblast cells, to become pluripotent stem cells, which have the capacity to produce many different types of cells. Takahashi and Yamanaka also experimented with human cell cultures in 2007. Each worked at Kyoto University in Kyoto, Japan. They called the pluripotent stem cells that they produced induced pluripotent stem cells (iPSCs) because they had induced the adult cells, called differentiated cells, to become pluripotent stem cells through genetic manipulation.

Format: Articles

Subject: Experiments

"Embryonic Stem Cell Lines Derived from Human Blastocytes" (1998), by James Thomson

After becoming chief pathologist at the University of Wisconsin-Madison Wisconsin Regional Primate Center in 1995, James A. Thomson began his pioneering work in deriving embryonic stem cells from isolated embryos. That same year, Thomson published his first paper, "Isolation of a Primate Embryonic Stem Cell Line," in Proceedings of the National Academy of Sciences of the United States of America, detailing the first derivation of primate embryonic stem cells. In the following years, Thomson and his team of scientists - Joseph Itskovitz-Eldor, Sander S. Shapiro, Michelle A.

Format: Articles

Subject: Experiments, Publications

"Generation of Germline-Competent Induced Pluripotent Stem Cells" (2007), by Keisuke Okita, Tomoko Ichisaka, and Shinya Yamanaka

In the July 2007 issue of Nature, Keisuke Okita, Tomoko Ichisaka, and Shinya Yamanaka added to the new work on induced pluripotent stem cells (iPSCs) with their "Generation of Germline-Competent Induced Pluripotent Stem Cells" (henceforth abbreviated "Generation"). The authors begin the paper by noting their desire to find a method for inducing somatic cells of patients to return to a pluripotent state, a state from which the cell can differentiate into any type of tissue but cannot form an entire organism.

Format: Articles

Subject: Publications

"Ethical Issues in Human Stem Cell Research: Executive Summary" (1999), by the US National Bioethics Advisory Commission

Ethical Issues in Human Stem Cell Research: Executive Summary was published in September 1999 by The US National Bioethics Advisory Commission in response to a national debate about whether or not the US federal government should fund embryonic stem cell research. Ethical Issues in Human Stem Cell Research recommended policy to US President William Clinton's administration, which advocated for federal spending on the use of stem research on stem cells that came from embryos left over from in vitro fertilization (IVF) fertility treatments.

Format: Articles

Subject: Legal, Ethics

Induced Pluripotent Stem Cells

Induced Pluripotent Stem Cells (iPSCs) are cells derived from non-pluripotent cells, such as adult somatic cells, that are genetically manipulated so as to return to an undifferentiated, pluripotent state. Research on iPSCs, initiated by Shinya Yamanaka in 2006 and extended by James Thompson in 2007, has so far revealed the same properties as embryonic stem cells (ESCs), making their discovery potentially very beneficial for scientists and ethicists alike.

Format: Articles

Subject: Technologies

Hematopoietic Stem Cell Transplantation

The purpose of regenerative medicine, especially tissue engineering, is to replace damaged tissue with new tissue that will allow the body to resume normal function. The uniqueness of tissue engineering is that it can restore normal structure in addition to repairing tissue function, and is often accomplished using stem cells. The first type of tissue engineering using stem cells was hematopoietic stem cell transplantation (HSCT), a surgical procedure in which hematopoietic stem cells (HSCs) are infused into a host to treat a variety of blood diseases, cancers, and immunodeficiencies.

Format: Articles

Subject: Technologies

Advanced Cell Technology, Inc.

Advanced Cell Technology, Inc. (ACT) is a biotechnology company that uses stem cell technology to develop novel therapies in the field of regenerative medicine. Formed in 1994, ACT grew from a small agricultural cloning research facility located in Worcester, Massachusetts, into a multi-locational corporation involved in using both human embryonic stem cells (hESC) and human adult stem cells as well as animal cells for therapeutic innovations.

Format: Articles

Subject: Organizations, Reproduction

Hematopoietic Stem Cells

The discovery of hematopoietic stem cells (HSCs) provided a pioneering step in stem cell research. HSCs are a type of multipotent adult stem cell, characterized by their ability to self-renew and differentiate into erythrocyte (red blood cell) and leukocyte (white blood cell) cell lineages. In terms of function, these cells are responsible for the continual renewal of the erythrocytes, leukocytes, and platelets in the body through a process called hematopoiesis. They also play an important role in the formation of vital organs such as the liver and spleen during fetal development.

Format: Articles

Subject: Processes

Ethics and Induced Pluripotent Stem Cells

The recent development of induced pluripotent stem cells (iPSCs) and related technologies has caught the attention of scientists, activists, politicians, and ethicists alike. IPSCs gained immediate international attention for their apparent similarity to embryonic stem cells after their successful creation in 2006 by Shinya Yamanaka and in 2007 by James Thompson and others.

Format: Articles

Subject: Technologies, Ethics

Julia Barlow Platt (1857-1935)

Julia Barlow Platt studied neural crests in animal embryos and became involved in politics in the US during the nineteenth and twentieth centuries. She researched how body and head segments formed in chicks (Gallus gallus) and spiny dogfish (Squalus acanthias). Platt observed that in the mudpuppy (Necturus maculosus), the coordinated migration of neural crest cells in the embryo produced parts of the nervous system, bones, and connective tissues in the head.

Format: Articles

Subject: People

Neural Crest

Early in the process of development, vertebrate embryos develop a fold on the neural plate where the neural and epidermal ectoderms meet, called the neural crest. The neural crest produces neural crest cells (NCCs), which become multiple different cell types and contribute to tissues and organs as an embryo develops. A few of the organs and tissues include peripheral and enteric (gastrointestinal) neurons and glia, pigment cells, cartilage and bone of the cranium and face, and smooth muscle.

Format: Articles

Subject: Theories

Gastrulation in Mus musculus (common house mouse)

As mice embryos develop, they undergo a stage of development called gastrulation. The hallmark of vertebrate gastrulation is the reorganization of the inner cell mass (ICM) into the three germ layers: ectoderm, mesoderm, and endoderm. Mammalian embryogenesis occurs within organisms; therefore, gastrulation was originally described in species with easily observable embryos. For example, the African clawed frog (Xenopus laevis) is the most widely used organism to study gastrulation because the large embryos develop inside a translucent membrane.

Format: Articles

Subject: Processes, Experiments

Pages