Search

Displaying 26 - 50 of 425 items.

Alec Jeffreys’s Experiments to Identify Individuals by Their Beta-globin Genes (1977-1979)

In a series of experiments in the late 1970s, Alec J. Jeffreys in the UK and Richard A. Flavell in the Netherlands developed a technique to detect variations in the DNA of different individuals. They compared fragments of DNA from individuals’ beta-globin genes, which produce a protein in hemoglobin. Previously, to identify biological material, scientists focused on proteins rather than on genes. But evidence about proteins enabled scientists only to exclude, but not to identify, individuals as the sources of the biological samples.

Format: Articles

Subject: Experiment

Curt Jacob Stern (1902-1981)

Curt Jacob Stern studied radiation and chromosomes in humans and fruit flies in the United States during the twentieth century. He researched the mechanisms of inheritance and of mitosis, or the process in which the chromosomes in the nucleus of a single cell, called the parent cell, split into identical sets and yield two cells, called daughter cells. Stern worked on the Drosophila melanogaster fruit fly, and he provided early evidence that chromosomes exchange genetic material during cellular reproduction.

Format: Articles

Subject: People

Beadle and Tatum's 1941 Experiments with Neurospora Revealed that Genes Produce Enzymes

Object is a digital image that depicts four stages in Beadle and Tatum's Neurospora experiments. Each stage is depicted in a separate section, with different test tubes in each section.

This illustration shows George Beadle and Edward Tatum's experiments with Neurospora crassa that indicated that single genes produce single enzymes. The pair conducted the experiments at Stanford University in Palo Alto, California. Enzymes are types of proteins that can catalyze reactions inside cells, reactions that produce a number of things, including nutrients that the cell needs. Neurospora crassa is a species of mold that grows on bread.

Format: Graphics

Subject: Theories, Experiments

Beadle's One Gene-One Enzyme Hypothesis

Object is a digital image with two panes, one on top of the other, both of which picture the area within a cell between the nucleus and the cell membrane. The top pane represent three genes within the cell nucleus, each of which produces a distinct kind of enzyme outside of the nucleus. Those enzymes then function in three distinct kinds of metabolic reactions. The bottom pane represents the same situation, except the second gene is damaged by x-rays and can't produce its enzymes. As a result, two of the three metabolic reactions fail to happen.

Between 1934 and 1945, George Beadle developed a hypothesis that each gene within the chromosomes of organisms each produced one enzyme. Enzymes are types of proteins that can catalyze reactions inside cells, and the figure shows that each enzyme controls a stage in a series of biochemical reactions. The top box in this figure represents a normal process of enzyme production and biochemical reactions, and the bottom box shows how Beadle's experiments affected the normal biochemical process.

Format: Graphics

Subject: Theories, Processes

Homeobox Genes and the Homeobox

Homeobox genes are a cluster of regulatory genes that are spatially and temporally expressed during early embryological development. They are interesting from both a developmental and evolutionary perspective since their sequences are highly conserved and shared across an enormously wide array of living taxa.

Format: Articles

Subject: Processes

Ethics of Designer Babies

A designer baby is a baby genetically engineered in vitro for specially selected traits, which can vary from lowered disease-risk to gender selection. Before the advent of genetic engineering and in vitro fertilization (IVF), designer babies were primarily a science fiction concept. However, the rapid advancement of technology before and after the turn of the twenty-first century makes designer babies an increasingly real possibility.

Format: Articles

Subject: Ethics, Reproduction

Amniocentesis Prior to 1980

The extraembryonic membranes that surround and originate from the embryos of vertebrates such as birds, reptiles, and mammals are crucial to their development. They are integral to increasing the surface area of the uterus, forming the chorion (which in turn produces the placenta) and the amnion, respectively. The amnion will ultimately surround the embryo in a fluid-filled amniotic cavity. This amniotic fluid, which cushions and protects the fetus and helps prevent the onset of labor, is sampled in amniocentesis to screen for genetic diseases.

Format: Articles

Subject: Processes, Reproduction

"Maternal Thyroid Deficiency During Pregnancy and Subsequent Neuropsychological Development of the Child" (1999), by James E. Haddow et al.

From 1987 to the late 1990s, James Haddow and his team of researchers at the Foundation for Blood Research in Scarborough, Maine, studied children born to women who had thyroid deficiencies while pregnant with those children. Haddow's team focused the study on newborns who had normal thyroid function at the time of neonatal screening. They tested the intelligence quotient, or IQ, of the children, ages eight to eleven years, and found that all of the children born to thyroid-hormone deficient mothers performed less well than the control group.

Format: Articles

Subject: Experiments

William Bateson (1861-1926)

At the turn of the twentieth century, William Bateson studied organismal variation and heredity of traits within the framework of evolutionary theory in England. Bateson applied Gregor Mendel's work to Charles Darwin's theory of evolution and coined the term genetics for a new biological discipline. By studying variation and advocating Mendelian genetics, Bateson furthered the field of genetics, encouraged the use of experimental methodology to study heredity, and contributed to later theories of genetic inheritance.

Format: Articles

Subject: People

Diana W. Bianchi

Diana W. Bianchi studied the medical treatment of premature and newborn infants in the US during the twentieth and twenty-first centuries. Bianchi helped develop non-invasive prenatal genetic tests that use cell-free fetal DNA found within maternal blood to diagnose genetic abnormalities of the fetus during pregnancy. The test provides a means to test fetuses for chromosomal and genetic abnormalities.

Format: Articles

Subject: People

Keith Henry Stockman Campbell (1954-2012)

Keith Henry Stockman Campbell studied embryo growth and cell differentiation during the twentieth and twenty-first centuries in the UK. In 1995, Campbell and his scientific team used cells grown and differentiated in a laboratory to clone sheep for the first time. They named these two sheep Megan and Morag. Campbell and his team also cloned a sheep from adult cells in 1996, which they named Dolly. Dolly was the first mammal cloned from specialized adult (somatic) cells with the technique of somatic cell nuclear transfer (SCNT).

Format: Articles

Subject: People

Social Implications of Non-Invasive Blood Tests to Determine the Sex of Fetuses

By 2011, researchers in the US had established that non-invasive blood tests can accurately determine the gender of a human fetus as early as seven weeks after fertilization. Experts predicted that this ability may encourage the use of prenatal sex screening tests by women interested to know the gender of their fetuses. As more people begin to use non-invasive blood tests that accurately determine the sex of the fetus at 7 weeks, many ethical questions pertaining to regulation, the consequences of gender-imbalanced societies, and altered meanings of the parent-child relationship.

Format: Articles

Subject: Reproduction, Ethics, Legal

Wilhelm Johannsen's Genotype-Phenotype Distinction

Wilhelm Johannsen in Denmark first proposed the distinction between genotype and phenotype in the study of heredity in 1909. This distinction is between the hereditary dispositions of organisms (their genotypes) and the ways in which those dispositions manifest themselves in the physical characteristics of those organisms (their phenotypes). This distinction was an outgrowth of Johannsen's experiments concerning heritable variation in plants, and it influenced his pure line theory of heredity.

Format: Articles

Subject: Theories

Sheldon Clark Reed (1910-2003)

Sheldon Clark Reed helped establish the profession of genetic counseling in the US during the twentieth century. In 1947 Reed coined the term genetic counseling to describe the interaction of a doctor explaining to a patient the likelihood of passing a certain trait to their offspring. With physicians being able to test for genetic abnormalities like cystic fibrosis, Reed helped trained individuals give patients the tools to make informed decisions. In 1955 Reed published the book Counseling in Medical Genetics.

Format: Articles

Subject: People

Muriel Wheldale Onslow (1880-1932)

Muriel Wheldale Onslow studied flowers in England with genetic and biochemical techniques in the early twentieth century. Working with geneticist William Bateson, Onslow used Mendelian principles and biochemical analysis together to understand the inheritance of flower colors at the beginning of the twentieth century. Onslow's study of snapdragons, or Antirrhinum majus, resulted in her description of epistasis, a phenomenon in which the phenotypic effect of one gene is influenced by one or more other genes. She discovered several biochemicals related to color formation.

Format: Articles

Subject: People

In the Womb: Identical Twins (2009), by National Geographic

National Geographic's documentary In the Womb: Identical Twins focuses on the prenatal development of human identical twins. Director Lorne Townend uses three-dimensional (3D) and four-dimensional (4D) ultrasound imaging and microscopy to depict twin development , genetic and epigenetic variations in the fetuses, and methods of fetal survival in the confines of the womb. Artist renditions of scientific data fill in areas of development inaccessible to the imaging tools.

Format: Articles

Subject: Outreach, Reproduction

The French Flag Model

The French flag model represents how embryonic cells receive and respond to genetic information and subsequently differentiate into patterns. Created by Lewis Wolpert in the late 1960s, the model uses the French tricolor flag as visual representation to explain how embryonic cells can interpret genetic code to create the same pattern even when certain pieces of the embryo are removed. Wolpert's model has provided crucial theoretical framework for investigating universal mechanisms of pattern formation during development.

Format: Articles

Subject: Processes, Theories

Francis Sellers Collins (1950- )

Francis Sellers Collins helped lead the International Human Genome Sequencing Consortium, which helped describe the DNA sequence of the human genome by 2001, and he helped develop technologies used in molecular genetics while working in the US in the twentieth and twenty-first centuries. He directed the US National Center for Human Genome Research (NCHGR), which became the National Human Genome Research Institute (NHGRI), of the US National Institutes of Health (NIH), located in Bethesda, Maryland, from 1993 to 2008.

Format: Articles

Subject: People

Beadle and Ephrussi's Transplantation Technique for Drosophila

Boris Ephrussi and George Wells Beadle developed a transplantation technique on flies, Drosophila melanogaster, which they described in their 1936 article A Technique of Transplantation for Drosophila. The technique of injecting a tissue from one fly larva into another fly larva, using a micropipette, to grow that tissue in the second larvae, was a means for investigating development of Drosophila. Through this technique, Beadle and Ephrussi studied the role of genes in embryological processes.

Format: Articles

Subject: Science

John Craig Venter (1946- )

John Craig Venter helped map the genomes of humans, fruitflies, and other organisms in the US in the late 1990s and early 2000s, and he helped develop an organism with a synthetic genome. In February 2001, Venter and his team published a human genome sequence after using a technique known as Expressed Sequence Tags, or ESTs. Venter worked to bridge commercial investment with scientific research. Venter founded a number of private companies, including the for-profit Celera Genomics, headquartered in Alameda, California, as well as research institutes, such as the not-for-profit J.

Format: Articles

Subject: People

"Presence of Fetal DNA in Maternal Plasma and Serum" (1997), by Dennis Lo, et al.

In the late 1990s researchers Yuk Ming Dennis Lo and his colleagues isolated fetal DNA extracted from pregnant woman’s blood. The technique enabled for more efficient and less invasive diagnoses of genetic abnormalities in fetuses, such as having too many copies of chromosomes.

Format: Articles

Subject: Experiments

Barbara McClintock (1902-1992)

Barbara McClintock worked on genetics in corn (maize) plants and spent most of her life conducting research at the Cold Spring Harbor Laboratory in Laurel Hollow, New York. McClintock's research focused on reproduction and mutations in maize, and described the phenomenon of genetic crossover in chromosomes. Through her maize mutation experiments, McClintock observed transposons, or mobile elements of genes within the chromosome, which jump around the genome. McClintock received the Nobel Prize for Physiology or Medicine in 1983 for her research on chromosome transposition.

Format: Articles

Subject: People

Simon Edward Fisher (1970-)

Simon Edward Fisher studied the genes that control speech and language in England and the Netherlands in the late twentieth and early twenty-first centuries. In 2001, Fisher co-discovered the FOXP2 gene with Cecilia Lai, a gene related to language acquisition in humans and vocalization in other mammals. When damaged, the human version of the gene leads to language disorders that disrupt language and speech skills. Fisher's discovery validated the hypothesis that genes influence language, resulting in further investigations of language disorders and their heritability.

Format: Articles

Subject: People

Wilhelm Ludvig Johannsen (1857-1927)

Wilhelm Ludvig Johannsen studied plants and helped found the field of genetics, contributing methods and concepts to the study of heredity around the turn of the twentieth century in Denmark. His experiments on heredity and variation in plants influenced the methods and techniques of geneticists, and his distinction between the genotype of an organism-its hereditary disposition-and its phenotype-its observable characteristics-remains at the core of contemporary biology. Johannsen criticized biological explanations that relied on concepts such as vitalism and teleology.

Format: Articles

Subject: People

Robert Guthrie (1916–1995)

Robert Guthrie developed a method to test infants for phenylketonuria (PKU) in the United States during the twentieth century. PKU is an inherited condition that causes an amino acid called phenylalanine to build to toxic levels in the blood. Untreated, PKU causes mental disabilities. Before Guthrie’s test, physicians rarely tested infants for PKU and struggled to diagnosis it. Guthrie’s test enabled newborns to be quickly and cheaply screened at birth and then treated for PKU if necessary, preventing irreversible neurological damage.

Format: Articles

Subject: People