Search

Displaying 76 - 100 of 247 items.

The Role of the Notch Signaling Pathway in Myogenesis

Among other functions, the Notch signaling pathway forestalls the process of myogenesis in animals. The Notch signaling pathway is a pathway in animals by which two adjacent cells within an organism use a protein named Notch to mechanically interact with each other. Myogenesis is the formation of muscle that occurs throughout an animal's development, from embryo to the end of life. The cellular precursors of skeletal muscle originate in somites that form along the dorsal side of the organism.

Format: Articles

Subject: Theories, Processes

Julia Bell (1879-1979)

Julia Bell worked in twentieth-century Britain, discovered Fragile X Syndrome, and helped find heritable elements of other developmental and genetic disorders. Bell also wrote much of the five volume Treasury of Human Inheritance, a collection about genetics and genetic disorders. Bell researched until late in life, authoring an original research article on the effects of the rubella virus of fetal development (Congenital Rubella Syndrome) at the age of 80.

Format: Articles

Subject: People

Francis Harry Compton Crick (1916-2004)

Francis Harry Compton Crick, who co-discovered the structure of deoxyribonucleic acid (DNA) in 1953 in Cambridge, England, also developed The Central Dogma of Molecular Biology, and further clarified the relationship between nucleotides and protein synthesis. Crick received the Nobel Prize in Physiology or Medicine that he shared with James Watson and Maurice Wilkins in 1962 for their discovery of the molecular structure of DNA.

Format: Articles

Subject: People

Cystic Fibrosis

Cystic fibrosis (CF) is a fatal, inherited disease found in humans and characterized by buildup of thick, sticky mucus, particularly in the respiratory and digestive tracts. The abnormally thick mucus prevents the pancreas from functioning normally; it often leads to digestive problems and chronic lung infections. Cystic fibrosis is most prevalent in Caucasian individuals, and approximately 1 in every 29 individuals in the US is a carrier for the mutated CF gene.

Format: Articles

Subject: Disorders

"The Origin and Behavior of Mutable Loci in Maize" (1950), by Barbara McClintock

The Origin and Behavior of Mutable Loci in Maize, by Barbara McClintock, was published in 1950 in the Proceedings of the National Academy of Sciences of the United States of America. McClintock worked at the Cold Spring Harbor Laboratory in Laurel Hollow, New York, at the time of the publication, and describes her discovery of transposable elements in the genome of corn (Zea mays). Transposable elements, sometimes called transposons or jumping genes, are pieces of the chromosome capable of physically changing positions along the chromosome.

Format: Articles

Subject: Publications

Barbara McClintock (1902-1992)

Barbara McClintock worked on genetics in corn (maize) plants and spent most of her life conducting research at the Cold Spring Harbor Laboratory in Laurel Hollow, New York. McClintock's research focused on reproduction and mutations in maize, and described the phenomenon of genetic crossover in chromosomes. Through her maize mutation experiments, McClintock observed transposons, or mobile elements of genes within the chromosome, which jump around the genome. McClintock received the Nobel Prize for Physiology or Medicine in 1983 for her research on chromosome transposition.

Format: Articles

Subject: People

The Jackson Laboratory

The Roscoe B. Jackson Laboratory, known commonly in the scientific field as the Jackson Laboratory, was founded by Clarence Cook Little in May 1929. The lab has been pivotal in research with in vitro fertilization, teratomas, gene replacement therapy for birth defects, and more because its researchers have focused from the beginning on developing the mouse as a model organism. Mice were chosen by researchers at Jackson as the best available model for genetic research, and today genetically uniform strains of mice developed at the lab are used in laboratories all over the world.

Format: Articles

Subject: Organizations

Role of Sonic Hedgehog (Shh) in Alcohol-Induced Craniofacial Abnormalities

Prenatal exposure to alcohol (ethanol) results in a continuum of physical and neurological developmental abnormalities that vary depending on the timing, duration, and degree of alcohol exposure. Heavy exposure during development may lead to the condition Fetal Alcohol Syndrome (FAS), characterized by growth deficits, neurological deficiencies and minor facial abnormalities. Alcohol is a known teratogen, an agent that causes birth defects and acts upon developing embryos through mechanisms that are not yet fully understood.

Format: Articles

Subject: Disorders

A plant genetically modified that accumulates Pb is especially promising for phytoremediation (2003), by Carmina Gisbert et al.

In 2003, Carmina Gisbert and her research team produced a tobacco plant that could remove lead from soil. To do so, they inserted a gene from wheat plants that produces phytochelatin synthase into a shrub tobacco plant (Nicotiana glauca) to increase N. glauca's absorption and tolerance of toxic metals, particularly lead and cadmium. Gisbert and her team aimed to genetically modify a plant so that it could be used for phytoremediation- using plants to remove toxic substances from the soil.

Format: Articles

Subject: Experiments, Technologies

Charles Darwin's Theory of Pangenesis

In 1868 in England, Charles Darwin proposed his pangenesis theory to describe the units of inheritance between parents and offspring and the processes by which those units control development in offspring. Darwin coined the concept of gemmules, which he said referred to hypothesized minute particles of inheritance thrown off by all cells of the body. The theory suggested that an organism's environment could modify the gemmules in any parts of the body, and that these modified gemmules would congregate in the reproductive organs of parents to be passed on to their offspring.

Format: Articles

Subject: Theories

Facial Abnormalities of Fetal Alcohol Syndrome (FAS)

Prenatal exposure to alcohol (ethanol) results in a continuum of physical, neurological, behavioral, and learning defects collectively grouped under the heading Fetal Alcohol Spectrum Disorder (FASD). Fetal Alcohol Syndrome (FAS) was first defined in 1973 as a condition characterized by pre- and postnatal growth deficiencies, facial abnormalities, and defects of the central nervous system. The pattern of facial defects that occur as a result of ethanol exposure during development primarily affects the midline of the face, altering morphology of the eyes, nose, and lips.

Format: Articles

Subject: Disorders, Reproduction

Max Ludwig Henning Delbruck (1906–1981)

Max Ludwig Henning Delbrick applied his knowledge of theoretical physics to biological systems such as bacterial viruses called bacteriophages, or phages, and gene replication during the twentieth century in Germany and the US. Delbrück demonstrated that bacteria undergo random genetic mutations to resist phage infections. Those findings linked bacterial genetics to the genetics of higher organisms. In the mid-twentieth century, Delbrück helped start the Phage Group and Phage Course in the US, which further organized phage research.

Format: Articles

Subject: People

Temperature-Dependent Sex Determination in Reptiles

The sex of a reptile embryo partly results from the production of sex hormones during development, and one process to produce those hormones depends on the temperature of the embryo's environment. The production of sex hormones can result solely from genetics or from genetics in combination with the influence of environmental factors. In genotypic sex determination, also called genetic or chromosomal sex determination, an organism's genes determine which hormones are produced.

Format: Articles

Subject: Experiments

Charles Robert Cantor (1942- )

Charles Robert Cantor helped sequence the human genome, and he developed methods to non-invasively determine the genes in human fetuses. Cantor worked in the US during the twentieth and twenty-first centuries. His early research focused on oligonucleotides, small molecules of DNA or RNA. That research enabled the development of a technique that Cantor subsequently used to describe nucleotide sequences of DNA, a process called sequencing, in humans. Cantor was the principal scientist for the Human Genome Project, for which scientists sequenced the entirety of the human genome in 2003.

Format: Articles

Subject: People, Reproduction

Elizabeth Dexter Hay (1927–2007)

Elizabeth Dexter Hay studied the cellular processes that affect development of embryos in the US during the mid-twentieth and early twenty-first centuries. In 1974, Hay showed that the extracellular matrix, a collection of structural molecules that surround cells, influences cell behavior. Cell growth, cell migration, and gene expression are influenced by the interaction between cells and their extracellular matrix.

Format: Articles

Subject: People

"Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells" (2007), by Junying Yu et al.

On 2 December 2007, Science published a report on creating human induced pluripotent stem (iPS) cells from human somatic cells: "Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells." This report came from a team of Madison, Wisconsin scientists: Junying Yu, Maxim A. Vodyanik, Kim Smuga-Otto, Jessica Antosiewicz-Bourget, Jennifer L. Frane, Shulan Tian, Jeff Nie, Gudrun A. Jonsdottir, Victor Ruotti, Ron Stewart, Igor I. Slukvin, and James A. Thomson.

Format: Articles

Subject: Publications

Androgen Insensitivity Syndrome

Androgen Insensitivity Syndrome (AIS) is a human disorder in which an individual's genetic sex (genotype) differs from that individual's observable secondary sex characteristics (phenotypes). A fetus with AIS is genetically male with a 46,XY genotype. The term 46,XY refers to the chromosomes found in most cells of the fetus. Most cells have a total of 46 autosomes, or non-sex chromosomes, and a pair sex chromosomes, XX for genetic females, or XY for genetic males.

Format: Articles

Subject: Disorders

Intraspecies Chimeras Produced in Laboratory Settings (1960-1975)

When cells-but not DNA-from two or more genetically distinct individuals combine to form a new individual, the result is called a chimera. Though chimeras occasionally occur in nature, scientists have produced chimeras in a laboratory setting since the 1960s. During the creation of a chimera, the DNA molecules do not exchange genetic material (recombine), unlike in sexual reproduction or in hybrid organisms, which result from genetic material exchanged between two different species. A chimera instead contains discrete cell populations with two unique sets of parental genes.

Format: Articles

Subject: Organisms, Processes

"Experiments in Plant Hybridization" (1866), by Johann Gregor Mendel

During the mid-nineteenth century, Johann Gregor Mendel experimented with pea plants to develop a theory of inheritance. In 1843, while a monk in the Augustian St Thomas's Abbey in Brünn, Austria, now Brno, Czech Repubic, Mendel examined the physical appearance of the abbey's pea plants (Pisum sativum) and noted inconsistencies between what he saw and what the blending theory of inheritance, a primary model of inheritance at the time, predicted.

Format: Articles

Subject: Experiments

Green Fluorescent Protein

Green fluorescent protein (GFP) is a protein in the jellyfish Aequorea Victoria that exhibits green fluorescence when exposed to light. The protein has 238 amino acids, three of them (Numbers 65 to 67) form a structure that emits visible green fluorescent light. In the jellyfish, GFP interacts with another protein, called aequorin, which emits blue light when added with calcium. Biologists use GFP to study cells in embryos and fetuses during developmental processes.

Format: Articles

Subject: Technologies

Alec John Jeffreys (1950–)

Alec John Jeffreys created a process called DNA fingerprinting in the UK during the twentieth century. For DNA fingerprinting, technicians identify a person as the source of a biological sample by comparing the genetic information contained in the person's DNA to the DNA contained in the sample. Jeffreys developed the technique in the 1980s while at the University of Leicester in Leicester, UK. Jeffreys's technique had immediate applications. In forensic science, DNA fingerprinting enabled police to identify suspects of crimes based on their genetic identities.

Format: Articles

Subject: People

Induced Pluripotent Stem Cell Experiments by Kazutoshi Takahashi and Shinya Yamanaka in 2006 and 2007

In 2006, Kazutoshi Takahashi and Shinya Yamanaka reprogrammed mice fibroblast cells, which can produce only other fibroblast cells, to become pluripotent stem cells, which have the capacity to produce many different types of cells. Takahashi and Yamanaka also experimented with human cell cultures in 2007. Each worked at Kyoto University in Kyoto, Japan. They called the pluripotent stem cells that they produced induced pluripotent stem cells (iPSCs) because they had induced the adult cells, called differentiated cells, to become pluripotent stem cells through genetic manipulation.

Format: Articles

Subject: Experiments

"Human Factor IX Transgenic Sheep Produced by Transfer of Nuclei from Transfected Fetal Fibroblasts" (1997), by Angelika E. Schnieke, et al.

In the 1990s, researchers working at the Roslin Institute in Edinburgh, Scotland, performed cloning experiments in collaboration with PPL Therapeutics in Roslin, Scotland, on human coagulation factor IX, a protein. The team of scientists used the methods identified during the Dolly experiments to produce transgenic livestock capable of producing milk containing human blood clotting factor IX, which helps to treat a type of hemophilia.

Format: Articles

Subject: Experiments

"Derivation of Pluripotent Stem Cells from Cultured Human Primordial Germ Cells" (1998), by John Gearhart et al.

In November 1998, two independent reports were published concerning the first isolation of pluripotent human stem cells, one of which was "Derivation of Pluripotent Stem Cells from Cultured Human Primordial Germ Cells." This paper, authored by John D. Gearhart and his research team - Michael J Shamblott, Joyce Axelman, Shunping Wang, Elizabeith M. Bugg, John W. Littlefield, Peter J. Donovan, Paul D. Blumenthal, and George R. Huggins - was published in Proceedings of the National Academy of Science soon after James A.

Format: Articles

Subject: Publications

Neurospora crassa Life Cycle

Object is a digital image with two parts that together show the Neurospora life cycle. The left part shows the asexual reproductive cycle of the mold. The right part shows the sexual reproductive cycle of the mold.

This diagram shows the life cycle of Neurospora crassa, a mold that grows on bread. N. crassa can reproduce through an asexual cycle or a sexual cycle. The asexual cycle (colored as a purple circle), begins in this figure with (1a) vegetative mycelium, which are strands of mature fungus. Some of the strands form bulbs (2a) in a process called conidiation. From those bulbs develop the conidia, which are spores. Next, (3a) a single conidium separates from its strand and elongates until it forms mycelium.

Format: Graphics

Subject: Organisms, Processes, Theories