Search

Displaying 1 - 25 of 27 items.

Pages

Apoptosis in Embryonic Development

Apoptosis, or programmed cell death, is a mechanism in embryonic development that occurs naturally in organisms. Apoptosis is a different process from cell necrosis, which is uncontrolled cell death usually after infection or specific trauma. As cells rapidly proliferate during development, some of them undergo apoptosis, which is necessary for many stages in development, including neural development, reduction in egg cells (oocytes) at birth, as well as the shaping of fingers and vestigial organs in humans and other animals. Sydney Brenner, H. Robert Horvitz, and John E.

Format: Articles

Subject: Theories

"Apoptosis: A Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics" (1972), by John F. R. Kerr, Andrew H. Wyllie and Alastair R. Currie

"Apoptosis: A Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics" (hereafter abbreviated as "Apoptosis") was published in the British Journal of Cancer in 1972 and co-authored by three pathologists who collaborated at the University of Aberdeen, Scotland. In this paper the authors propose the term apoptosis for regulated cell death that proceeds through active, controlled morphological changes. This is in contrast to necrosis, a passive mode of cell death that results from uncontrolled cellular reactions to injury or stress.

Format: Articles

Subject: Publications

"Cellular death in morphogenesis of the avian wing" (1962), by John W. Saunders Jr., et al.

In the early 1960s, John W. Saunders Jr., Mary T. Gasseling, and Lilyan C. Saunders in the US investigated how cells die in the developing limbs of chick embryos. They studied when and where in developing limbs many cells die, and they studied the functions of cell death in wing development. At a time when only a few developmental biologists studied cell death, or apoptosis, Saunders and his colleagues showed that researchers could use embryological experiments to uncover the causal mechanisms of apotosis.

Format: Articles

Subject: Experiments

Alexis Carrel's Immortal Chick Heart Tissue Cultures (1912-1946)

In an effort to develop tissue culture techniques for long-term tissue cultivation, French surgeon and biologist Alexis Carrel, and his associates, produced and maintained a series of chick heart tissue cultures at the Rockefeller Institute in New York City. From 1912 to 1946, this series of chick heart tissue cultures remained alive and dividing. Since the duration of this culture greatly exceeded the normal chick life span, the cells were deemed immortal.

Format: Articles

Subject: Experiments

"The Role of Maternal Mitochondria during Oogenesis, Fertilization and Embryogenesis" (2002), by James M. Cummins

James M Cummins published 'The Role of Maternal Mitochondria during Oogenesis, Fertilization and Embryogenesis' 30 January 2002 in Reproductive BioMedicine Online. In the article, Cummins examines the role of the energy producing cytoplasmic particles, or organelles called mitochondria. Humans inherit mitochondria from their mothers, and mechanisms have evolved to eliminate sperm mitochondria in early embryonic development. Mitochondria contain their own DNA (mtDNA) separate from nuclear DNA (nDNA).

Format: Articles

Subject: Publications

The Hayflick Limit

The Hayflick Limit is a concept that helps to explain the
mechanisms behind cellular aging. The concept states that a normal human
cell can only replicate and divide forty to sixty times before it
cannot divide anymore, and will break down by programmed cell death
or apoptosis. The concept of the Hayflick Limit revised Alexis
Carrel's earlier theory, which stated that cells can replicate
themselves infinitely. Leonard Hayflick developed the concept while
at the Wistar Institute in Philadelphia,

Format: Articles

Subject: Theories

The Discovery of p53 Protein

The p53 protein acts as a pivotal suppressor of inappropriate cell proliferation. By initiating suppressive effects through induction of apoptosis, cell senescence, or transient cell-cycle arrest, p53 plays an important role in cancer suppression, developmental regulation, and aging. Its discovery in 1979 was a product of research into viral etiology and the immunology of cancer. The p53 protein was first identified in a study of the role of viruses in cancer through its ability to form a complex with viral tumor antigens.

Format: Articles

Subject: Experiments

Leonard Hayflick (1928- )

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty times before they cannot divide any further. Researchers later found that the cause of the Hayflick Limit is the shortening of telomeres, or portions of DNA at the ends of chromosomes that slowly degrade as cells replicate.

Format: Articles

Subject: People

Effects of Prenatal Alcohol Exposure on Cerebellum Development

Prenatal exposure to alcohol (ethanol) results in a continuum of physical, neurological, behavioral, and learning defects collectively grouped under the heading fetal alcohol spectrum disorders (FASD). Fetal alcohol syndrome (FAS) is the most severe combination of these defects under this heading, and is characterized by pre- and postnatal growth deficiencies, facial abnormalities, and defects of the central nervous system (CNS).

Format: Articles

Subject: Disorders, Reproduction

Mitochondrial Diseases in Humans

Mitochondrial diseases in humans result when the small organelles called mitochondria, which exist in all human cells, fail to function normally. The mitochondria contain their own mitochondrial DNA (mtDNA) separate from the cell's nuclear DNA (nDNA). The main function of mitochondria is to produce energy for the cell. They also function in a diverse set of mechanisms such as calcium hemostasis, cell signaling, regulation of programmed cell death (apoptosis), and biosynthesis of heme proteins that carry oxygen.

Format: Articles

Subject: Disorders, Reproduction

Paternal Sperm Telomere Elongation and Its Impact on Offspring Fitness

Telomeres are structures at the ends of DNA strands that get longer in the DNA of sperm cells as males age. That phenomenon is different for most other types of cells, for which telomeres get shorter as organisms age. In 1992, scientists showed that telomere length (TL) in sperm increases with age in contrast to most cell of most other types. Telomeres are the protective caps at the end of DNA strands that preserve chromosomal integrity and contribute to DNA length and stability.

Format: Articles

Subject: Theories

Facial Abnormalities of Fetal Alcohol Syndrome (FAS)

Prenatal exposure to alcohol (ethanol) results in a continuum of physical, neurological, behavioral, and learning defects collectively grouped under the heading Fetal Alcohol Spectrum Disorder (FASD). Fetal Alcohol Syndrome (FAS) was first defined in 1973 as a condition characterized by pre- and postnatal growth deficiencies, facial abnormalities, and defects of the central nervous system. The pattern of facial defects that occur as a result of ethanol exposure during development primarily affects the midline of the face, altering morphology of the eyes, nose, and lips.

Format: Articles

Subject: Disorders, Reproduction

Role of Sonic Hedgehog (Shh) in Alcohol-Induced Craniofacial Abnormalities

Prenatal exposure to alcohol (ethanol) results in a continuum of physical and neurological developmental abnormalities that vary depending on the timing, duration, and degree of alcohol exposure. Heavy exposure during development may lead to the condition Fetal Alcohol Syndrome (FAS), characterized by growth deficits, neurological deficiencies and minor facial abnormalities. Alcohol is a known teratogen, an agent that causes birth defects and acts upon developing embryos through mechanisms that are not yet fully understood.

Format: Articles

Subject: Disorders

"Cell Deaths in Normal Vertebrate Ontogeny" (1951), by Alfred Glücksmann

The review article “Cell Deaths in Normal Vertebrate Ontogeny” (abbreviated as “Cell Deaths”) was published in Biological Reviews of the Cambridge Philosophy Society in 1951. The author, Alfred Glücksmann, was a German developmental biologist then working at the Strangeways Research Laboratory, Cambridge, England. In “Cell Deaths,” Glücksmann summarizes observations about cell death in normal vertebrate development that he had compiled from literature published during the first half of the twentieth century.

Format: Articles

Subject: Publications

The Effects of Thalidomide on Embryonic Development

Embryogenesis is an intricate process that can easily be disrupted by means of teratogenic agents. Some of these agents target the embryonic period's "window of susceptibility," three to eight weeks after a pregnant woman's last menstruation, when the highest degree of sensitivity to embryonic cell differentiation and organ formation occurs. The embryonic period or critical period is when most organ systems form, whereas the fetal period, week eight to birth, involves the growth and modeling of the organ systems.

Format: Articles

Subject: Processes, Disorders

Studies of Thalidomide's Effects on Rodent Embryos from 1962-2008

Thalidomide is a sedative drug introduced to European markets on 1 October 1957 after extensive testing on rodent embryos to ensure its safety. Early laboratory tests in rodent populations showed that pregnant rodents could safely use it, so doctors prescribed Thalidomide to treat morning sickness in pregnant women. However, in humans Thalidomide interfered with embryonic and fetal development in ways not observed in rodent tests.

Format: Articles

Subject: Organisms, Reproduction, Disorders

Effects of Prenatal Alcohol Exposure on Ocular Development

Maternal consumption of alcohol (ethanol) can result in a range of alcohol-induced developmental defects. In humans, those collective birth defects are called Fetal Alcohol Spectrum Disorders, with the most severe manifestation being Fetal Alcohol Syndrome (FAS). FAS is defined by pre- and post-natal growth retardation, minor facial abnormalities, and deficiencies in the central nervous system (CNS). The eye and ocular system development is particularly susceptible to the effects of prenatal alcohol exposure and can result in visual impairment or blindness.

Format: Articles

Subject: Disorders, Reproduction

"Programmed Cell Death-II. Endocrine Potentiation of the Breakdown of the Intersegmental Muscles of Silkmoths" (1964), by Richard A. Lockshin and Carroll M. Williams

Richard A. Lockshin's 1963 PhD dissertation on cell death in insect metamorphosis was conducted under the supervision of Harvard insect physiologist Carroll M. Williams. Lockshin and Williams used this doctoral research as the basis for five articles, with the main title "Programmed Cell Death," that were published between 1964 and 1965 in the Journal of Insect Physiology. These articles examine the cytological processes, neuronal and endocrinal controls, and the influence of drugs on the mechanism of cell death observed in pupal muscle structures of the American silkmoth.

Format: Articles

Subject: Experiments, Publications

The Effects of Diethylstilbestrol on Embryonic Development

Estrogen plays a key role in the regulation of gene transcription. This is accomplished by its ability to act as a ligand and to bind to specific estrogen receptor (ER) molecules, such as ERα and ERβ, which act as nuclear transcription factors. There are three major nuclear estrogen receptor protein domains: the estrogen binding domain, the protein interaction domain, and the DNA binding domain.

Format: Articles

Subject: Disorders

Fetal Alcohol Syndrome (FAS)

The concept Fetal Alcohol Syndrome (FAS) refers to a set of birth defects that occur in children born to mothers who abused alcohol during pregnancy. The alcohol-induced defects include pre- and post-natal growth deficiencies, minor facial abnormalities, and damage to the developing central nervous system (CNS).

Format: Articles

Subject: Disorders

The Notch Signaling Pathway in Embryogenesis

The Notch signaling pathway is a mechanism in animals by which adjacent cells communicate with each other, conveying spatial information and genetic instructions for the animal's development. All multicellular animals utilize Notch signaling, which contributes to the formation, growth, and development of embryos (embryogenesis). Notch signaling also contributes to the differentiation of embryonic cells into various types of cells into various types of cells, such as neurons.

Format: Articles

Subject: Processes

Mitochondria

All cells that have a nucleus, including plant, animal, fungal cells, and most single-celled protists, also have mitochondria. Mitochondria are particles called organelles found outside the nucleus in a cell's cytoplasm. The main function of mitochondria is to supply energy to the cell, and therefore to the organism. The theory for how mitochondria evolved, proposed by Lynn Margulis in the twentieth century, is that they were once free-living organisms.

Format: Articles

Subject: Organisms, Theories

"Induction and Patterning of the Primitive Streak, an Organizing Center of Gastrulation in the Amniote" (2004), by Takashi Mikawa, Alisa M. Poh, Kristine A. Kelly, Yasuo Ishii, and David E. Reese

"Induction and Patterning of the Primitive Streak, an Organizing Center of Gastrulation in the Amniote," (hereafter referred to as "Induction") examines the mechanisms underlying early amniote gastrulation and the formation of the primitive streak and midline axis. The review, authored by Takashi Mikawa and colleagues at Cornell University Medical College, was published in Developmental Dynamics in 2004.

Format: Articles

Subject: Publications

Viktor Hamburger's Study of Central-Peripheral Relations in the Development of Nervous System

An important question throughout the history of embryology is whether the formation of a biological structure is predetermined or shaped by its environment. If both intrinsic and environmental controls occur, how exactly do the two processes coordinate in crafting specific forms and functions? When Viktor Hamburger started his PhD study in embryology in the 1920s, few neuroembryologists were investigating how the central neurons innervate peripheral organs.

Format: Articles

Subject: Experiments

Congenital Rubella Syndrome (CRS)

Congenital rubella syndrome (CRS) can occur in children whose mothers contracted the rubella virus, sometimes called German measles, during pregnancy. Depending on the gestational period when the mother contracts rubella, an infant born with CRS may be unaffected by the virus or it may have severe developmental defects. The most severe effects of the virus on fetal development occur when the mother contracts rubella between conception and the first trimester.

Format: Articles

Subject: Disorders

Pages