Search

Displaying 751 - 767 of 767 items.

The Process of Gastrulation in Frog Embryos

StageName: 12

Illustration of the movement of the three hemispheres of cells, the animal cap (dark green) the marginal zone (lime green) and the ventral cap (yellow) during frog gastrulation. The external view column (images a.1-a.6) shows gastrulation as it occurs on the outside of the embryo. The cross-section view column (images b.1-b.6) shows the internal view of gastrulation. The cross-sections are through the middle of the embryo.

Format: Graphics

Subject: Processes, Organisms, Theories

Fruit Fly Life Cycle

Object is a digital image of fruit flies, showing how they develop through stages of egg, larva, pupa, and adult. The image has a magnification box on parts of the larvae. The box displays imaginal disc, which eventually develop into the adult body parts.

Fruit flies of the species Drosophila melanogaster develop from eggs to adults in eight to ten days at 25 degrees Celsius. They develop through four primary stages: egg, larva, pupa, and adult. When in the wild, female flies lay their fertilized eggs in rotting fruit or other decomposing material that can serve as food for the larvae. In the lab, fruit flies lay their fertilized eggs in a mixture of agar, molasses, cornmeal, and yeast. After roughly a day, each egg hatches into a larva.

Format: Graphics

Subject: Theories, Processes, Organisms

Beadle and Ephrussi’s Technique to Transplant Optic Discs between Fruit Fly Larvae

Object is a digital image of fruit fly larvae. There are three panes. In the first, a micropipette sucks the optic disc from a fruit fly larva. In the second, the micropipette pushes the optic disc into the abdomen of another fruit fly larva. The third pane shows the adult fruit fly from the second pane with an eye that has developed in its abdomen.

In 1935, George Beadle and Boris Ephrussi developed a technique to transplant optic discs between fruit fly larvae. They developed it while at the California Institute of Technology in Pasedena, California. Optic discs are tissues from which the adult eyes develop. Beadle and Ephrussi used their technique to study the development of the eye and eye pigment. (1) The experimenter dissects a donor larva, which is in the third instar stage of development, and removes the optic disc (colored red) with a micropipette.

Format: Graphics

Subject: Technologies, Experiments, Organisms

Beadle and Ephrussi Show that Something Besides Eye Tissue Determines Eye Color in Fruit Flies

Object is a digital image of fruit flies, and it has three panes. The first pane shows two fruit fly larvae, with one having its optic disc removed and the other getting that disc inserted in its abdomen. The second pane shows an adult fruit fly, a donee, which has a normal colored eye in its abdomen. The third pane shows an adult fruit fly, a donee, which has an abnormally colored eye in its abdomen.

In the 1930s, George Beadle and Boris Ephrussi discovered factors that affect eye colors in developing fruit flies. They did so while working at the California Institute of Technology in Pasadena, California. (1) They took optic discs (colored fuchsia in the image) from fruit fly larvae in the third instar stage of development. Had the flies not been manipulated, they would have developed into adults with vermilion eyes.

Format: Graphics

Subject: Experiments, Organisms

Neurospora crassa

Object is a digital image. It displays a laboratory workbench. On it is a loaf of bread with bread mold growing on it. There is also a set of beakers showing the bread mold raised in culture media. There is also a microscope, and a magnification box that shows an image microscopic bread mold.

Neurospora crassa is a red mold that scientists use to study genetics. N. crassa commonly grows on bread as shown in the top left corner of this figure. To culture the mold in lab, researchers grow it in glassware such as test tubes, Erlenmeyer flasks, and petri dishes, as shown in the top right corner of the figure. In the glassware, researchers place a gel, called a medium, of agar, sucrose, salts, and vitamins. The mold grows on the medium, and cotton stoppers prevent anything from contaminating the mold.

Format: Graphics

Subject: Organisms

Neurospora crassa Life Cycle

Object is a digital image with two parts that together show the Neurospora life cycle. The left part shows the asexual reproductive cycle of the mold. The right part shows the sexual reproductive cycle of the mold.

This diagram shows the life cycle of Neurospora crassa, a mold that grows on bread. N. crassa can reproduce through an asexual cycle or a sexual cycle. The asexual cycle (colored as a purple circle), begins in this figure with (1a) vegetative mycelium, which are strands of mature fungus. Some of the strands form bulbs (2a) in a process called conidiation. From those bulbs develop the conidia, which are spores. Next, (3a) a single conidium separates from its strand and elongates until it forms mycelium.

Format: Graphics

Subject: Organisms, Processes, Theories

Southern Gastric Brooding Frog

Object is a painted image of two southern gastric brooding frogs facing each other. The one on the left has a transparent middle to reveal tadpoles swimming inside of it. The one on the right shows a more mature juvenile crawling out of the mouth.

The Southern Gastric Brooding Frog (Rheobotrahcus silus) was a frog species that lived in Australia. It was declared extinct in 2002. Once adult males fertilized the eggs of females, the females swallowed their eggs. The stomachs of the females then functioned somewhat like wombs, protecting the eggs while they gestated. Once the eggs developed into juveniles, female frogs performed oral birth and regurgitated their young.

Format: Graphics

Subject: Organisms

Chloroplasts

Object is a digital image of a chloroplast. There are two boxes, one atop the other. In the top box is an image of a chloroplast, which is roughly ovoid. A scale bar indicates that the chloroplast is roughly 5 micrometers in length. The outer membrane is colored light green, and the inner membrane is a different shade of light green. The top right parts of the outer and inner membranes are cut away to reveal dozens thylakoids within, which are all dark green and look like tires. They are stacked on top of each other to form ten granums.

Chloroplasts are the organelles in plant and algal cells that conduct photosynthesis. A single chloroplast has an outer membrane and an inner membrane, with an intermembrane space in between. Within the inner membrane, interconnected stacks of thylakoids, called granum, float in a protein rich fluid called the stroma. These thylakoid stacks contain chlorophyll, a pigment which converts sunlight into usable energy for plants and free oxygen from water. The stacks are sites of light reactions within a plant cell.

Format: Graphics

Subject: Theories, Processes

Jelly Fish and Green Fluorescent Protein

Object is a digital image that represents green fluorescent protein at various levels of organization within an organism. On the left of the image is a blue circle, in which there is a jelly fish, with some of its parts aglow. From one such part, a zoom circle juts to the right, in which is represented a strand of DNA from the jelly fish. From that circle, a black arrow points to the right and to a new zoom circle, this one representing the primary amino acid sequence coded for by the DNA sequence and that eventually folds into the protein.

The crystal jellyfish, Aequorea victoria, produces and emits light, called bioluminescence. Its DNA codes for sequence of 238 amino acids that forms a protein called Green Fluorescent Protein (GFP). FP is folded so that a part of the protein, called the chromophore, is located in the center of the protein. The chemical structure of the chromophore emits a green fluorescence when exposed to light in the range of blue to ultraviolet.

Format: Graphics

Subject: Theories, Processes, Organisms, Technologies

DNA and X and Y Chromosomes

Object is a digital image that represents how DNA partly constitutes a Y-chromosome. Image shows different parts of an unbroken strand that begins with the smallest parts on the left side of the image, and eventually forms the Y-chromosome on the right side of the image, so that the chromosome looks like a kite with a long tail. On the left side of the image, a DNA double helix is enlarged to reveal the paired nucleotides within. The width of the helix is 2 nanometers. As the helix continues to the right, it bends downwards, and it gets smaller and seemingly further way from the viewer.

Y-chromosomes exist in the body cells of many kinds of male animals. Found in the nucleus of most living animal cells, the X and Y-chromosomes are condensed structures made of DNA wrapped around proteins called histones. The individual histones bunch into groups that the coiled DNA wraps around called a nucleosome, which are roughly 10 nano-meters (nm) across. The histones bunch together to form a helical fiber (30 nm) that spins into a supercoil (200 nm). During much of a cell's life, DNA exists in the 200 nm supercoil phase.

Format: Graphics

Subject: Theories, Processes

Mitochondria

Object is a digital image of a mitochondrion. There are two boxes, one atop of the other. In the top box is the mitochondrion with a scale bar that indicates that the organelle is 1 micrometer in length. The image depicts the mitochondrion�s outer membrane, which is roughly ovoid in shape and is colored a transparent orange to reveal the inner membrane within, colored red. The top left quarter of the outer membrane and the inner membrane are cut away to reveal the cristae. In the bottom box is a round animal cell, colored teal.

Mitochondria are organelles found in the cytoplasm of eukaryotic cells. They are composed of an outer membrane and an inner membrane. The outer membrane faces the cellular cytoplasm, while the inner membrane folds back on itself multiple times, forming inner folds, called cristae. The space between the two membrane layers is called the intermembrane space, and the space within the inner membrane is called the matrix.

Format: Graphics

Subject: Theories, Processes

Isidore Geoffroy Saint-Hilaire (1805-1861)

Isidore Geoffroy Saint-Hilaire studied anatomy and congenital abnormalities in humans and other animals in nineteenth century France. Under the tutelage of his father, Etienne Geoffroy Saint-Hilaire, Isidore compiled and built on his father's studies of individuals with developmental malformations, then called monstrosities.

Format: Articles

Subject: People, Disorders

Eclipse of Reason (1987)

Eclipse of Reason is a 1987 anti-abortion documentary film directed, filmed, and narrated by Bernard Nathanson, an obstetrician in the US. American Portrait Films released the film in 1987 featuring Nathanson’s commentary and footage of an abortion of a four-month-old fetus. The film also featured the testimony of women who had suffered following similar procedures. In Eclipse of Reason, Nathanson equates the fetus to a person, likening abortion procedures to murder and arguing for the illegalization of abortion.

Format: Articles

Subject: Outreach, Religion

Gonzales v. Carhart (2007)

In Gonzales v. Carhart (2007), the US Supreme Court held in a five-to-four decision that the 2003 Partial-Birth Abortion Ban Act passed by the US Congress was constitutional. Although the Court previously ruled in Stenberg v. Carhart (2000) that a Nebraska law that prohibited partial-birth abortions was unconstitutional, Gonzales reversed this decision. Gonzales created the precedent that anyone who delivers and kills a living fetus could be subject to legal consequences, unless he or she performed the procedure to save the life of the mother.

Format: Articles

Subject: Legal, Reproduction

“Pelvic Scoring for Elective Induction” (1964), by Edward Bishop

In the 1964 article, “Pelvic Scoring for Elective Induction,” obstetrician Edward Bishop describes his method to determine whether a doctor should induce labor, or artificially start the birthing process, in a pregnant woman. Aside from medical emergencies, a woman can elect to induce labor to choose when she gives birth and have a shorter than normal labor. The 1964 publication followed an earlier article by Bishop, also about elective induction.

Format: Article

Subject: Reproduction, Publications

"The Environment and Disease: Association or Causation?" (1965), by Austin Bradford Hill

In 1965, Austin Bradford Hill published the article “The Environment and Disease: Association or Causation?” in the Proceedings of the Royal Society of Medicine. In the article, Hill describes nine criteria to determine if an environmental factor, especially a condition or hazard in a work environment, causes an illness. The article arose from an inaugural presidential address Hill gave at the 1965 meeting of the Section of Occupational Medicine of the Royal Society of Medicine in London, England.

Format: Articles

Subject: Publications

Oswald Theodore Avery (1877-1955)

Oswald Theodore Avery studied strains of pneumococcus of the genus Streptococcus in the US in the first half of the twentieth century. This bacterium causes pneumonia, a common cause of death at the turn of the twentieth century. In a 1944 paper, Avery demonstrated with colleagues Colin Munro MacLeod and Maclyn McCarty that deoxyribonucleic acid, or DNA, instead of protein, formed the material of heritable transformation in bacteria. Avery helped untangle some of the relationships between genes and developmental processes.

Subject: People