Search

Displaying 1 - 25 of 984 items.

Pages

"The Potency of the First Two Cleavage Cells in Echinoderm Development. Experimental Production of Partial and Double Formations" (1891-1892), by Hans Driesch

Hans Adolf Eduard Driesch was a late-nineteenth and early-twentieth century philosopher and developmental biologist. In the spring of 1891 Driesch performed experiments using two-celled sea urchin embryos, the results of which challenged the then-accepted understanding of embryo development. Driesch showed that the cells of an early embryo, when separated, could each continue to develop into normal larval forms.

Format: Articles

Subject: Experiments, Publications

"Contributions to the Development of the Embryo. On the Artificial Production of One of the First Two Blastomeres, and the Later Development (Postgeneration) of the Missing Half of the Body" (1888), by Wilhelm Roux

Wilhelm Roux was an influential figure in the early history of experimental embryology. Although he originally studied medicine, he was invited to be a Privatdozentur, or unsalaried lecturer, at the Anatomical Institute in Breslau (Wroclaw), Poland, in 1879. He spent the next ten years at this institute, working his way from Dozent to associate professor and finally, in 1889, to director for his own institute, Institut für Entwicklungsgeschichte, or Institute for Developmental History and Mechanics.

Format: Articles

Subject: Experiments

Experimental Studies on Germinal Localization (1904), by Edmund B. Wilson

At the turn of the twentieth century, Edmund B. Wilson
performed experiments to show where germinal
matter was located in molluscs. At Columbia University in New York City,
New York, Wilson studied what causes cells to differentiate during
development. In 1904 he conducted his experiments on molluscs, and he modified the
theory about the location of germinal matter in the succeeding years. Wilson and others modified the
theory of germinal localization to accommodate results that showed

Format: Articles

Subject: Experiments

Amphioxus, and the Mosaic Theory of Development (1893), by Edmund Beecher Wilson

Edmund Beecher Wilson experimented with Amphioxus (Branchiostoma) embryos in 1892 to identify what caused their cells to differentiate into new types of cells during the process of development. Wilson shook apart the cells at early stages of embryonic development, and he observed the development of the isolated cells. He observed that in the normal development of Amphioxus, all three main types of symmetry, or cleavage patterns observed in embryos, could be found. Wilson proposed a hypothesis that reformed the Mosaic Theory associated with Wilhelm Roux in Germany.

Format: Articles

Subject: Experiments

Somites: Formation and Role in Developing the Body Plan

Somites are blocks of mesoderm that are located on either side of the neural tube in the developing vertebrate embryo. Somites are precursor populations of cells that give rise to important structures associated with the vertebrate body plan and will eventually differentiate into dermis, skeletal muscle, cartilage, tendons, and vertebrae. Somites also determine the migratory paths of neural crest cells and of the axons of spinal nerves.

Format: Articles

Subject: Processes

The First Successful Cloning of a Gaur (2000), by Advanced Cell Technology

Advanced Cell Technology (ACT), a stem cell biotechnology company in Worcester, Massachusetts, showed the potential for cloning to contribute to conservation efforts. In 2000 ACT researchers in the United States cloned a gaur (Bos gaurus), an Asian ox with a then declining wild population. The researchers used cryopreserved gaur skin cells combined with an embryo of a domestic cow (Bos taurus). A domestic cow also served as the surrogate for the developing gaur clone.

Format: Articles

Subject: Experiments

"Formation of Genetically Mosaic Mouse Embryos and Early Development of Lethal (t12/t12)-Normal Mosaics" (1964), by Beatrice Mintz

The paper "Formation of Genetically Mosaic Mouse Embryos and Early Development of Lethal (t12/t12)-Normal Mosaics," by Beatrice Mintz, describes a technique to fuse two mouse embryos into a single embryo. This work was published in the Journal of Experimental Zoology in 1964. When two embryos are correctly joined before the 32-cell stage, the embryo will develop normally and exhibit a mosaic pattern of cells as an adult.

Format: Articles

Subject: Experiments

Biological Clocks and the Formation of Human Tooth Enamel

Tooth enamel contains relics of its formation process, in the form of microstructures, which indicate the incremental way in which it forms. These microstructures, called cross-striations and striae of Retzius, develop as enamel-forming cells called ameloblasts, whcih cyclically deposit enamel on developing teeth in accordance with two different biological clocks. Cross-striations result from a twenty-four hour cycle, called a Circadian rhythm, in the enamel deposition process, while striae of Retzius have a longer periodicity.

Format: Articles

Subject: Processes

Process of Eukaryotic Embryonic Development

All sexually reproducing, multicellular diploid eukaryotes begin life as embryos. Understanding the stages of embryonic development is vital to explaining how eukaryotes form and how they are related on the tree of life. This understanding can also help answer questions related to morphology, ethics, medicine, and other pertinent fields of study. In particular, the field of comparative embryology is concerned with documenting the stages of ontogeny.

Format: Articles

Subject: Processes

The Formation of Reticular Theory

In the nineteenth century, reticular theory aimed to describe the properties of neurons, the specialized cells which make up the nervous system, but was later disconfirmed by evidence. Reticular theory stated that the nervous system was composed of a continuous network of specialized cells without gaps (synapses), and was first proposed by researcher Joseph von Gerlach in Germany in 1871.

Format: Articles

Subject: Theories

In re Agent Orange Product Liability Litigation (1979-1984)

In the legal case In re Agent Orange Product Liability Litigation of the early 1980s, US military veterans of the Vietnam War sued the US chemical companies that had produced the herbicide Agent Orange, and those companies settled with US veterans out of court. Agent Orange contains dioxin, a chemical later shown to disrupt the hormone system of the body and to cause cancer. As veterans returned to the US from Vietnam, scientists further confirmed that exposure to Agent Orange caused a variety of cancers in veterans and developmental problems in the veterans' children.

Format: Articles

Subject: Legal, Ethics

Lysogenic Bacteria as an Experimental Model at the Pasteur Institute (1915-1965)

Lysogenic bacteria, or virus-infected bacteria, were the primary experimental models used by scientists working in the laboratories of the Pasteur Institute in Paris, France, during the 1950s and 1960s. Historians of science have noted that the use of lysogenic bacteria as a model in microbiological research influenced the scientific achievements of the Pasteur Institute's scientists.

Format: Articles

Subject: Organisms, Experiments

"Experimental Studies on Congenital Malformations" (1959), by James G. Wilson

The article Experimental Studies on Congenital Malformations was published in the Journal of Chronic Diseases in 1959. The author, James G. Wilson, studied embryos and birth defects at the University of Florida Medical School in Gainesville, Florida. In his article, Wilson reviewed experiments on birds and mammals from the previous forty years to provide general principles and guidelines in the study of birth defects and teratogens, which are things that cause birth defects.

Format: Articles

Subject: Publications

The Cell in Development and Inheritance (1900), by Edmund Beecher Wilson

The Cell in Development and Inheritance, by Edmund Beecher Wilson, provided a textbook introduction to cell biology for generations of biologists in the twentieth century. In his book, Wilson integrated information about development, inheritance, chromosomes, organelles, and the structure and functions of cells. First published in 1896, the book started with 371 pages, grew to 483 pages in the second edition that appeared in 1900, and expanded to 1,231 pages by the third and final edition in 1925.

Format: Articles

Subject: Publications

"On the Nature of the Process of Fertilization and the Artificial Production of Normal Larvae (Plutei) From the Unfertilized Eggs of the Sea Urchin" (1899), by Jacques Loeb

Jacques Loeb developed procedures to make embryos from unfertilized sea urchin eggs in 1899. Loeb called the procedures "artificial parthenogenesis," and he introduced them and his results in "On the Nature of the Process of Fertilization and the Artificial Production of Norma Larvae (Plutei) from the Unfertilized Eggs of the Sea Urchin" in an 1899 issue of The American Journal of Physiology. In 1900 Loeb elaborated on his experiments.

Format: Articles

Subject: Experiments

"A Genomic Regulatory Network for Development" (2002), by Eric H. Davidson, et al.

In 2002 Eric Davidson and his research team published 'A Genomic Regulatory Network for Development' in Science. The authors present the first experimental verification and systemic description of a gene regulatory network. This publication represents the culmination of greater than thirty years of work on gene regulation that began in 1969 with 'A Gene Regulatory Network for Development: A Theory' by Roy Britten and Davidson. The modeling of a large number of interactions in a gene network had not been achieved before.

Format: Articles

Subject: Publications

The Effectiveness of Phototherapy in Premature Infants (1968)

In 1968, pediatric researchers Jerold Lucey, Mario Ferreiro, and Jean Hewitt conducted an experimental trial that determined that exposure to light effectively treated jaundice in premature infants. The three researchers published their results in 'Prevention of Hyperbilirubinemia of Prematurity by Phototherapy' that same year in Pediatrics. Jaundice is the yellowing of the skin and eyes due to the failure of the liver to break down excess bilirubin in the blood, a condition called hyperbilirubinemia.

Format: Articles

Subject: Experiments

Pfeffer Cell Apparatus

The Pfeffer Zelle (Pfeffer Cell Apparatus), invented by Wilhelm Pfeffer in 1877, measured the minimum pressure needed to prevent a pure solvent from passing into a solution across a semi-permeable membrane, called osmotic pressure. The apparatus provided Pfeffer with a way to quantitatively measure osmotic pressure. Pfeffer devised the apparatus in the 1870s at the University of Basel in Basel, Switzerland, and he described the Pfeffer Cell Apparatus in his 1877 book Osmotische Untersuchungen: Studien Zur Zellmechanik (Osmotic Investigations: Studies on Cell Mechanics).

Format: Articles

Subject: Technology

"The Development of the Turtle Carapace" (1989), by Ann Campbell Burke

Ann Campbell Burke examines the development and evolution of vertebrates, in particular, turtles. Her Harvard University experiments, described in Development of the Turtle Carapace: Implications for the Evolution of a Novel Bauplan, were published in 1989. Burke used molecular techniques to investigate the developmental mechanisms responsible for the formation of the turtle shell.

Format: Articles

Subject: Experiments, Publications

Stem Cells

According to the US National Institutes of Health (NIH), the standard American source on stem cell research, three characteristics of stem cells differentiate them from other cell types: (1) they are unspecialized cells that (2) divide for long periods, renewing themselves and (3) can give rise to specialized cells, such as muscle and skin cells, under particular physiological and experimental conditions. When allowed to grow in particular environments, stem cells divide many times. This ability to proliferate can yield millions of stem cells over several months.

Format: Articles

Subject: Processes

Purkinje Cells

Purkinje cells, also called Purkinje neurons, are neurons in vertebrate animals located in the cerebellar cortex of the brain. Purkinje cell bodies are shaped like a flask and have many threadlike extensions called dendrites, which receive impulses from other neurons called granule cells. Each cell also has a single projection called an axon, which transmits impulses to the part of the brain that controls movement, the cerebellum. Purkinje cells are inhibitory neurons: they secrete neurotransmitters that bind to receptors that inhibit or reduce the firing of other neurons.

Format: Articles

Subject: Theories

Telomerase in Human Development

Telomerase is an enzyme that regulates the lengths of telomeres in the cells of many organisms, and in humans it begins to function int the early stages of embryonic development. Telomeres are repetitive sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling. In 1989, Gregg Morin found that telomerase was present in human cells. In 1996, Woodring Wright and his team examined human embryonic cells and found that telomerase was active in them. Scientists manipulate telomerase in cells to give cells the capacity to replicate infinitely.

Format: Articles

Subject: Theories

Enovid: The First Hormonal Birth Control Pill

Enovid was the first hormonal birth control pill. G. D. Searle and Company began marketing Enovid as a contraceptive in 1960. The technology was created by the joint efforts of many individuals and organizations, including Margaret Sanger, Katharine McCormick, Gregory Pincus, John Rock, Syntex, S.A. Laboratories, and G.D. Searle and Company Laboratories.

Format: Articles

Subject: Technologies, Reproduction

Effect of Prenatal Alcohol Exposure on Radial Glial Cells

Prenatal alcohol (ethanol) exposure can have dramatic effects on the development of the central nervous system (CNS), including morphological abnormalities and an overall reduction in white matter of the brain. The impact of ethanol on neural stem cells such as radial glia (RG) has proven to be a significant cause of these defects, interfering with the creation and migration of neurons and glial cells during development.

Format: Articles

Subject: Disorders, Reproduction

Hematopoietic Stem Cells

The discovery of hematopoietic stem cells (HSCs) provided a pioneering step in stem cell research. HSCs are a type of multipotent adult stem cell, characterized by their ability to self-renew and differentiate into erythrocyte (red blood cell) and leukocyte (white blood cell) cell lineages. In terms of function, these cells are responsible for the continual renewal of the erythrocytes, leukocytes, and platelets in the body through a process called hematopoiesis. They also play an important role in the formation of vital organs such as the liver and spleen during fetal development.

Format: Articles

Subject: Processes

Pages