Search

Displaying 1 - 25 of 75 items.

Pages

Brian K. Hall (1941- )

Brian Hall is the son of Doris Garrad and Harry Hall, and was born in Port Kembla, NSW Australia, on 28 October 1941. He attended the University of New England in Armidale NSW, graduating in 1963 with a BSc in zoology, in 1965 with a BSc (Honors) in zoology, and in 1968 with a PhD in zoology. His PhD thesis, undertaken under the supervision of Patrick D. F. Murray, FAA was on the differentiation of bone and secondary cartilage in chicken embryos.

Format: Articles

Subject: People

The Development of the Neural Crest and the Migration of Neural Crest Cells (NCCs) in the Embryos of Various Vertebrates

Object is a digitized image line drawings that depict the formation of neural crest cells in vertebrates. Image has six sub images, which depict six stages, labeled (a) through (f), of the neural plate as it folds to form the neural tube, neural crest cells, and a sheet of extoderm. Arrows between the six subimages indicate developmental processes for different taxa. The path from (a) to (b) to (c) represents the process in rats. The path (a) to (b) to (d) to (f) represents the process in birds. The path (a) to (b) to (e) to (f) represents the process in amphibians.

This diagram shows how NCCs migrate differently in rats, birds and amphibians. The arrows represent both chronology of NCCs migration and the differential paths that NCCs follow in different classes of animals. The solid black portion of each illustration represents the neural crest, and the large black dots in (c) and in (f) represent the neural crest cells. The speckled sections that at first form a basin in (a) and then close to form a tube in (f) represent the neural ectoderm. The solid white portions represent the epidermal ectoderm.

Format: Graphics

F. G. Hall

image/jpg black and white image reformatted digital

Format: Photographs

Subject: People

Frog Embryo in the Blastula Stage

StageName: 8

Illustration of the animal-vegetal gradient in Xenopus laevis ( African clawed frog) eggs after fertilization. During fertilization, the sperm s point of entry determines the future dorsal side (shaded) and ventral side (unshaded) of the embryo. The prospective ventral side of the embryo forms on the side where the sperm enters while the prospective dorsal side forms opposite the sperm s point of entry.

Format: Graphics

The Process of Gastrulation in Frog Embryos

StageName: 12

Illustration of the movement of the three hemispheres of cells, the animal cap (dark green) the marginal zone (lime green) and the ventral cap (yellow) during frog gastrulation. The external view column (images a.1-a.6) shows gastrulation as it occurs on the outside of the embryo. The cross-section view column (images b.1-b.6) shows the internal view of gastrulation. The cross-sections are through the middle of the embryo.

Format: Graphics

Subject: Processes, Organisms, Theories

Felix Anton Dohrn

Felix Anton Dohrn is best remembered as the founder of the Stazione Zoologica di Napoli, the world' s first permanent laboratory devoted to the study of marine organisms. Dohrn was born on 29 December 1840 in Stettin, Pomerania (now Poland), to a wealthy merchant family. Dohrn's paternal grandfather, Heinrich, trained as a surgeon and then established a sugar refinery, while Dohrn's father, Carl August Dohrn, who inherited the family business, became interested in natural history through Alexander von Humboldt, a family friend.

Format: Articles

Subject: People

Charles Otis Whitman (1842-1910)

Charles Otis Whitman was an extremely curious and driven researcher who was not content to limit himself to one field of expertise. Among the fields of study to which he made significant contributions were: embryology; morphology, or the form of living organisms and the relationships between their structures; natural history; and behavior.

Format: Articles

Subject: People

Edwin Grant Conklin (1863-1952)

Edwin Grant Conklin was born in Waldo, Ohio, on 24 November 1863 to parents Nancy Maria Hull and Dr. Abram V. Conklin. Conklin's family was very religious and he seriously considered a theistic path before choosing a career in academics. Conklin's scientific work was primarily in the areas of embryology, cytology, and morphology, though many questions regarding the relationships between science, society, and philosophy had an influence on both his writings and academic lectures.

Format: Articles

Subject: People

Neural Crest

Early in the process of development, vertebrate embryos develop a fold on the neural plate where the neural and epidermal ectoderms meet, called the neural crest. The neural crest produces neural crest cells (NCCs), which become multiple different cell types and contribute to tissues and organs as an embryo develops. A few of the organs and tissues include peripheral and enteric (gastrointestinal) neurons and glia, pigment cells, cartilage and bone of the cranium and face, and smooth muscle.

Format: Articles

Subject: Theories

Francis Maitland Balfour (1851-1882)

During the 1870s and early 1880s, the British morphologist Francis Maitland Balfour contributed in important ways to the budding field of evolutionary embryology, especially through his comparative embryological approach to uncovering ancestral relationships between groups. As developmental biologist and historian Brian Hall has observed, the field of evolutionary embryology in the nineteenth century was the historical ancestor of modern-day evolutionary developmental biology.

Format: Articles

Subject: People

Isabel and Thomas Hunt Morgan

Isabel (back) and Thomas Hunt Morgan at Schemaerhorn Hall at Columbia University

Format: Photographs

Subject: People

John Chassar Moir (1900–1977)

John Chassar Moir lived in Scotland during the twentieth century and helped develop techniques to improve the health of pregnant women. Moir helped to discover compounds that doctors could administer to women after childbirth to prevent life-threatening blood loss. Those compounds included the ergot alkaloid called ergometrine, also called ergonovine, and d-lysergic acid beta-propanolamide. Moir tested ergometrine in postpartum patients and documented that it helped prevent or manage postpartum hemorrhage in women.

Format: Articles

Subject: People, Reproduction, Disorders

The Meckel-Serres Conception of Recapitulation

Johann Friedrich Meckel and Antoine Etienne Reynaud Augustin Serres developed in the early 1800s the basic principles of what later became called the Meckel-Serres Law. Meckel and Serres both argued that fetal deformities result when development prematurely stops, and they argued that these arrests characterized lower life forms, through which higher order organisms progress during normal development. The concept that the embryos of higher order organisms progress through successive stages in which they resemble lower level forms is called recapitulation.

Format: Articles

Subject: Theories

Germ Layers

A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through the process of gastrulation. During gastrulation, a hollow cluster of cells called a blastula reorganizes into two primary germ layers: an inner layer, called endoderm, and an outer layer, called ectoderm.

Format: Articles

Subject: Theories, Processes

Mesoderm

Mesoderm is one of the three germ layers, groups of cells that interact early during the embryonic life of animals and from which organs and tissues form. As organs form, a process called organogenesis, mesoderm interacts with endoderm and ectoderm to give rise to the digestive tract, the heart and skeletal muscles, red blood cells, and the tubules of the kidneys, as well as a type of connective tissue called mesenchyme. All animals that have only one plane of symmetry through the body, called bilateral symmetry, form three germ layers.

Format: Articles

Subject: Processes

Essay: The Cuvier-Geoffroy Debate

In 1830, a dispute erupted in the halls of lÕAcad mie des Sciences in Paris between the two most prominent anatomists of the nineteenth century. Georges Cuvier and tienne Geoffroy Saint-Hilaire, once friends and colleagues at the Paris Museum, became arch rivals after this historical episode. Like many important disputes in the history of science, this debate echoes several points of contrasts between the two thinkers.

Format: Essays

Subject: Theories

Neurocristopathies

Neurocristopathies are a class of pathologies in vertebrates,
including humans, that result from abnormal expression, migration,
differentiation, or death of neural crest cells (NCCs) during embryonic development. NCCs are cells
derived from the embryonic cellular structure called the neural crest.
Abnormal NCCs can cause a neurocristopathy by chemically affecting the
development of the non-NCC tissues around them. They can also affect the
development of NCC tissues, causing defective migration or

Format: Articles

Subject: Theories

Simon Edward Fisher (1970-)

Simon Edward Fisher studied the genes that control speech and language in England and the Netherlands in the late twentieth and early twenty-first centuries. In 2001, Fisher co-discovered the FOXP2 gene with Cecilia Lai, a gene related to language acquisition in humans and vocalization in other mammals. When damaged, the human version of the gene leads to language disorders that disrupt language and speech skills. Fisher's discovery validated the hypothesis that genes influence language, resulting in further investigations of language disorders and their heritability.

Format: Articles

Subject: People

Essay: Homology

Homology is a central concept of comparative and evolutionary biology, referring to the presence of the same bodily parts (e.g., morphological structures) in different species. The existence of homologies is explained by common ancestry, and according to modern definitions of homology, two structures in different species are homologous if they are derived from the same structure in the common ancestor.

Format: Essays

Subject: Processes

Johann Friedrich Blumenbach (1752-1840)

In eighteenth century Germany, Johann Friedrich Blumenbach studied how individuals within a species vary, and to explain such variations, he proposed that a force operates on organisms as they develop. Blumenbach used metrical methods to study the history of humans, but he was also a natural historian and theorist. Blumenbach argued for theories of the transformation of species, or the claim that new species can develop from existing forms.

Format: Articles

Subject: People

Temperature-Dependent Sex Determination in Reptiles

The sex of a reptile embryo partly results from the production of sex hormones during development, and one process to produce those hormones depends on the temperature of the embryo's environment. The production of sex hormones can result solely from genetics or from genetics in combination with the influence of environmental factors. In genotypic sex determination, also called genetic or chromosomal sex determination, an organism's genes determine which hormones are produced.

Format: Articles

Subject: Experiments

Wilhelm Johannsen's Genotype-Phenotype Distinction

Wilhelm Johannsen in Denmark first proposed the distinction between genotype and phenotype in the study of heredity in 1909. This distinction is between the hereditary dispositions of organisms (their genotypes) and the ways in which those dispositions manifest themselves in the physical characteristics of those organisms (their phenotypes). This distinction was an outgrowth of Johannsen's experiments concerning heritable variation in plants, and it influenced his pure line theory of heredity.

Format: Articles

Subject: Theories

William Bateson (1861-1926)

At the turn of the twentieth century, William Bateson studied organismal variation and heredity of traits within the framework of evolutionary theory in England. Bateson applied Gregor Mendel's work to Charles Darwin's theory of evolution and coined the term genetics for a new biological discipline. By studying variation and advocating Mendelian genetics, Bateson furthered the field of genetics, encouraged the use of experimental methodology to study heredity, and contributed to later theories of genetic inheritance.

Format: Articles

Subject: People

Mesenchyme

Mesenchyme is a type of animal tissue comprised of loose cells embedded in a mesh of proteins and fluid, called the extracellular matrix. The loose, fluid nature of mesenchyme allows its cells to migrate easily and play a crucial role in the origin and development of morphological structures during the embryonic and fetal stages of animal life. Mesenchyme directly gives rise to most of the body's connective tissues, from bones and cartilage to the lymphatic and circulatory systems.

Format: Articles

Subject: Processes

Endoderm

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of cells transforms into a two-layered embryo made of an inner layer of endoderm and an outer layer of ectoderm. In more complex organisms, like vertebrates, these two primary germ layers interact to give rise to a third germ layer, called mesoderm.

Format: Articles

Subject: Processes

Pages